Approximate correctors and convergence rates in almost-periodic homogenization

被引:11
作者
Shen, Zhongwei [1 ]
Zhuge, Jinping [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 110卷
关键词
Homogenization; Almost periodic; Approximate correctors; Convergence rates; ELLIPTIC-SYSTEMS; COEFFICIENTS; OPERATORS; PDE;
D O I
10.1016/j.matpur.2017.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out a comprehensive study of quantitative homogenization of second-order elliptic systems with bounded measurable coefficients that are almost-periodic in the sense of H. Weyl. We obtain uniform local L-2 estimates for approximate correctors in terms of a function that quantifies the almost-periodicity of the coefficient matrix. We give a condition that implies the existence of (true) correctors. These estimates as well as similar estimates for the dual approximate correctors yield optimal or near optimal convergence rates in H-1 and L-2. The L-2-based Holder and Lipschitz estimates at large scale are also established. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:187 / 238
页数:52
相关论文
共 19 条
  • [1] [Anonymous], 1955, Almost Periodic Functions
  • [2] Bounded Correctors in Almost Periodic Homogenization
    Armstrong, Scott
    Gloria, Antoine
    Kuusi, Tuomo
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (01) : 393 - 426
  • [3] Lipschitz Estimates in Almost-Periodic Homogenization
    Armstrong, Scott N.
    Shen, Zhongwei
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (10) : 1882 - 1923
  • [4] Armstrong SN, 2016, ANN SCI ECOLE NORM S, V49, P423
  • [5] Lipschitz Regularity for Elliptic Equations with Random Coefficients
    Armstrong, Scott N.
    Mourrat, Jean-Christophe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 219 (01) : 255 - 348
  • [6] COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION
    AVELLANEDA, M
    LIN, FH
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) : 803 - 847
  • [7] Bondarenko A, 2005, DISCRETE CONT DYN-A, V13, P503
  • [8] Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media
    Caffarelli, Luis A.
    Souganidis, Panagiotis E.
    [J]. INVENTIONES MATHEMATICAE, 2010, 180 (02) : 301 - 360
  • [9] On second-order almost-periodic elliptic operators
    Dungey, N
    ter Elst, AFM
    Robinson, DW
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 735 - 753
  • [10] Giaquinta M., 1983, ANN MATH STUD, V105