Bipartite graphs with every k-matching in a Hamiltonian cycle

被引:0
作者
Wang, Miao [1 ]
Liu, Yan [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
k-matching; k-matching-hamiltonian; hamiltonian cycle; bipartite graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (U, W; E) be a balanced bipartite graph of order 2n. We call G k-matching-hamiltonian, if every matching with k edges is contained in a hamiltonian cycle. In this paper, we prove that the property that being k-matching-hamiltonian is (n + k + 1)-stable, that is, whenever G + xy is k-matching-hamiltonian for some x E U, y E W such that xy (is an element of) over bar E(G) and d(x) + d(y) >= n + k + 1 then G is k-matching-hamiltonian. Thus we give a sufficient condition for a balanced bipartite graph to be k-matching-hamiltonian and hamiltonian.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 11 条
[1]  
Amar D., 2006, DEGREE CONDITION IMP
[2]   Bipartite graphs with every matching in a cycle [J].
Amar, Denise ;
Flandrin, Evelyne ;
Gancarzewicz, Grzegorz ;
Wojda, A. Pawel .
DISCRETE MATHEMATICS, 2007, 307 (11-12) :1525-1537
[3]  
[Anonymous], 1972, DISSERTATION
[4]   PROOF OF A CONJECTURE OF HAGGKVIST ON CYCLES AND INDEPENDENT EDGES [J].
BERMAN, KA .
DISCRETE MATHEMATICS, 1983, 46 (01) :9-13
[5]  
Bondy J. A., 1980, RES REP CORR, P80
[6]   NEW SUFFICIENT CONDITIONS FOR CYCLES IN GRAPHS [J].
FAN, GH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :221-227
[7]   Graphs with every k-matching in a Hamiltonian cycle [J].
Gancarzewicz, G ;
Wojda, AP .
DISCRETE MATHEMATICS, 2000, 213 (1-3) :141-151
[8]  
Haggkvist R., 1979, Graph theory and related topics, P219
[9]   ON HAMILTONIAN BIPARTITE GRAPHS [J].
MOON, J ;
MOSER, L .
ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (03) :163-&
[10]  
Ore O., 1960, Amer. Math. Monthly, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]