Independence and hamiltonicity in 3-domination-critical graphs

被引:1
|
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [21] Domination dot-critical graphs
    Burton, T
    Sumner, DP
    DISCRETE MATHEMATICS, 2006, 306 (01) : 11 - 18
  • [22] A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs
    Guellati, Nabil
    Kheddouci, Hamamache
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2010, 70 (04) : 406 - 415
  • [23] Domination dot-critical graphs with no critical vertices
    Zhao Chengye
    Yang Yuansheng
    Sun Linlin
    DISCRETE MATHEMATICS, 2008, 308 (15) : 3241 - 3248
  • [24] Some results related to the toughness of 3-domination critical graphs
    Ananchuen, N
    Plummer, MD
    DISCRETE MATHEMATICS, 2003, 272 (01) : 5 - 15
  • [25] Independence and Efficient Domination on P6-free Graphs
    Lokshtanov, Daniel
    Pilipczuk, Marcin
    van Leeuwen, Erik Jan
    ACM TRANSACTIONS ON ALGORITHMS, 2018, 14 (01)
  • [26] Roman Domination Dot-critical Graphs
    Nader Jafari Rad
    Lutz Volkmann
    Graphs and Combinatorics, 2013, 29 : 527 - 533
  • [27] WEAKLY CONNECTED TOTAL DOMINATION CRITICAL GRAPHS
    Sandueta, Elsie P.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 25 (02): : 267 - 274
  • [28] Characterization of Roman domination critical unicyclic graphs
    Hansberg, A.
    Rad, N. Jafari
    Volkmann, L.
    UTILITAS MATHEMATICA, 2011, 86 : 129 - 146
  • [29] On Local Edge Connected Domination Critical Graphs
    Ananchuen, Nawarat
    UTILITAS MATHEMATICA, 2010, 82 : 11 - 23
  • [30] On questions on (total) domination vertex critical graphs
    Mojdeh, Doost Ali
    Hasni, Roslan
    ARS COMBINATORIA, 2010, 96 : 405 - 419