Independence and hamiltonicity in 3-domination-critical graphs

被引:1
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 10 条
[1]  
[Anonymous], J COMBIN MATH COMBIN
[2]  
[Anonymous], J NANJING U
[3]  
Ao S, 1996, J GRAPH THEOR, V22, P9, DOI 10.1002/(SICI)1097-0118(199605)22:1<9::AID-JGT2>3.0.CO
[4]  
2-S
[5]  
FLANDRIN E, 1995, UNPUB SOME PROPERTIE
[6]  
MYNHARDT CM, COMMUNICATION
[7]   CRITICAL CONCEPTS IN DOMINATION [J].
SUMNER, DP .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :33-46
[8]   DOMINATION CRITICAL GRAPHS [J].
SUMNER, DP ;
BLITCH, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) :65-76
[9]  
TIAN F, HAMILTONICITY 3 GAMM
[10]   HAMILTONIAN PROPERTIES OF DOMINATION-CRITICAL GRAPHS [J].
WOJCICKA, E .
JOURNAL OF GRAPH THEORY, 1990, 14 (02) :205-215