Independence and hamiltonicity in 3-domination-critical graphs

被引:1
|
作者
Favaron, O [1 ]
Tian, F [1 ]
Zhang, L [1 ]
机构
[1] ACAD SINICA,INST SYST SCI,BEIJING 100080,PEOPLES R CHINA
关键词
domination; independence; Hamiltonicity;
D O I
10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.3.CO;2-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta, gamma, i and alpha be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-gamma-critical if gamma = 3 and the addition of any edge decreases gamma by 1. It was conjectured that any connected 3-gamma-critical graph satisfies i = gamma, and is hamiltonian if delta greater than or equal to 2. We show here that every connected 3-gamma-critical graph G with delta greater than or equal to 2 satisfies alpha less than or equal to delta + 2; if alpha = delta + 2 then i = gamma; while if alpha less than or equal to delta + 1 then G is hamiltonian. (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 50 条
  • [1] Hamiltonicity in 3-domination-critical graphs with α=δ+2
    Tian, F
    Wei, B
    Zhang, L
    DISCRETE APPLIED MATHEMATICS, 1999, 92 (01) : 57 - 70
  • [2] Hamiltonicity of Domination Vertex-Critical Claw-Free Graphs
    Kaemawichanurat, Pawaton
    ARS COMBINATORIA, 2020, 152 : 13 - 29
  • [3] New results on 3-domination critical graphs
    Balbuena, Camino
    Hansberg, Adriana
    AEQUATIONES MATHEMATICAE, 2012, 83 (03) : 257 - 269
  • [4] Some results on the independence number of connected domination critical graphs
    Kaemawichanurat, P.
    Jiarasuksakun, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (02) : 190 - 196
  • [5] New results on 3-domination critical graphs
    Camino Balbuena
    Adriana Hansberg
    Aequationes mathematicae, 2012, 83 : 257 - 269
  • [6] INDEPENDENCE SATURATION AND EXTENDED DOMINATION CHAIN IN GRAPHS
    Arumugam, S.
    Subramanian, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 171 - 181
  • [7] On 2-domination and independence domination numbers of graphs
    Hansberg, Adriana
    Volkmann, Lutz
    ARS COMBINATORIA, 2011, 101 : 405 - 415
  • [8] Complexity of domination, hamiltonicity and treewidth for tree convex bipartite graphs
    Hao Chen
    Zihan Lei
    Tian Liu
    Ziyang Tang
    Chaoyi Wang
    Ke Xu
    Journal of Combinatorial Optimization, 2016, 32 : 95 - 110
  • [9] Complexity of domination, hamiltonicity and treewidth for tree convex bipartite graphs
    Chen, Hao
    Lei, Zihan
    Liu, Tian
    Tang, Ziyang
    Wang, Chaoyi
    Xu, Ke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 95 - 110
  • [10] On k-domination and j-independence in graphs
    Hansberg, Adriana
    Pepper, Ryan
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1472 - 1480