Novel phytochemical-antibiotic conjugates as multitarget inhibitors of Pseudomononas aeruginosa GyrB/ParE and DHFR

被引:21
作者
Jayaraman, Premkumar [1 ,2 ]
Sakharkar, Kishore R. [3 ]
Lim, ChuSing [1 ,2 ]
Siddiqi, Mohammad Imran
Dhillon, Sarinder K. [4 ]
Sakharkar, Meena K. [1 ,5 ]
机构
[1] Nanyang Technol Univ, Biomed Engn Res Ctr, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Adv Design & Modeling Lab, Singapore 639798, Singapore
[3] OmicsVista, Singapore, Singapore
[4] Univ Malaya, Fac Sci, Inst Biol Sci, Kuala Lumpur, Malaysia
[5] Univ Tsukuba, Sch Life & Environm Sci, Ibaraki, Japan
关键词
hybrid compounds; multi-target inhibition; drug resistance; dihydrofolate reductase; DNA gyrase subunit B; topoisomerase IV subunit B; rational drug design; DNA GYRASE; DIHYDROFOLATE-REDUCTASE; NATURAL-PRODUCTS; E; COLI; MODEL; RESISTANCE; DISCOVERY; QUALITY; PARAMETERIZATION; COMBINATIONS;
D O I
10.2147/DDDT.S43964
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Background: There is a dearth of treatment options for community-acquired and nosocomial Pseudomonas infections due to several rapidly emerging multidrug resistant phenotypes, which show resistance even to combination therapy. As an alternative, developing selective promiscuous hybrid compounds for simultaneous modulation of multiple targets is highly appreciated because it is difficult for the pathogen to develop resistance when an inhibitor has activity against multiple targets. Methods: In line with our previous work on phytochemical-antibiotic combination assays and knowledge-based methods, using a fragment combination approach we here report a novel drug design strategy of conjugating synergistic phytochemical-antibiotic combinations into a single hybrid entity for multi-inhibition of P. aeruginosa DNA gyrase subunit B (GyrB)/topoisomerase IV subunit B (ParE) and dihydrofolate reductase (DHFR) enzymes. The designed conjugates were evaluated for their multitarget specificity using various computational methods including docking and dynamic simulations, drug-likeness using molecular properties calculations, and pharmacophoric features by stereoelectronic property predictions. Results: Evaluation of the designed hybrid compounds based on their physicochemical properties has indicated that they are promising drug candidates with drug-like pharmacotherapeutic profiles. In addition, the stereoelectronic properties such as HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital), and MEP (molecular electrostatic potential) maps calculated by quantum chemical methods gave a good correlation with the common pharmacophoric features required for multitarget inhibition. Furthermore, docking and dynamics simulations revealed that the designed compounds have favorable binding affinity and stability in both the ATP-binding sites of GyrB/ParE and the folate-binding site of DHFR, by forming strong hydrogen bonds and hydrophobic interactions with key active site residues. Conclusion: This new design concept of hybrid "phyto-drug" scaffolds, and their simultaneous perturbation of well-established antibacterial targets from two unrelated pathways, appears to be very promising and could serve as a prospective lead in multitarget drug discovery.
引用
收藏
页码:449 / 475
页数:27
相关论文
共 72 条
[1]   Literature mining in support of drug discovery [J].
Agarwal, Pankaj ;
Searls, David B. .
BRIEFINGS IN BIOINFORMATICS, 2008, 9 (06) :479-492
[2]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[3]   Conjugating berberine to a multidrug resistance pump inhibitor creates an effective antimicrobial [J].
Ball, Anthony R. ;
Casadei, Gabriele ;
Samosorn, Siritron ;
Bremner, John B. ;
Ausubel, Frederick M. ;
Moy, Terence I. ;
Lewis, Kim .
ACS CHEMICAL BIOLOGY, 2006, 1 (09) :594-600
[4]   Crystal structures of Escherichia coli topoisomerase IV ParE subunit (24 and 43 kilodaltons):: a single residue dictates differences in novobiocin potency against topoisomerase IV and DNA gyrase [J].
Bellon, S ;
Parsons, JD ;
Wei, YY ;
Hayakawa, K ;
Swenson, LL ;
Charifson, PS ;
Lippke, JA ;
Aldape, R ;
Gross, CH .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2004, 48 (05) :1856-1864
[5]   QMEAN: A comprehensive scoring function for model quality assessment [J].
Benkert, Pascal ;
Tosatto, Silvio C. E. ;
Schomburg, Dietmar .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 71 (01) :261-277
[6]   Toward the estimation of the absolute quality of individual protein structure models [J].
Benkert, Pascal ;
Biasini, Marco ;
Schwede, Torsten .
BIOINFORMATICS, 2011, 27 (03) :343-350
[7]   The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery [J].
Bermingham, A ;
Derrick, JP .
BIOESSAYS, 2002, 24 (07) :637-648
[8]   Recent advances in bacterial topoisomerase inhibitors [J].
Bradbury, Barton J. ;
Pucci, Michael J. .
CURRENT OPINION IN PHARMACOLOGY, 2008, 8 (05) :574-581
[9]   Pseudomonas aeruginosa: all roads lead to resistance [J].
Breidenstein, Elena B. M. ;
de la Fuente-Nunez, Cesar ;
Hancock, Robert E. W. .
TRENDS IN MICROBIOLOGY, 2011, 19 (08) :419-426
[10]   Dual action-based approaches to antibacterial agents [J].
Bremner, John B. ;
Ambrus, Joseph I. ;
Samosorn, Siritron .
CURRENT MEDICINAL CHEMISTRY, 2007, 14 (13) :1459-1477