Nonlinear biharmonic equations with negative exponents

被引:38
作者
Choi, Y. S. [1 ]
Xu, Xingwang [2 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
关键词
Conformally invariant equation; Symmetry; ZETA-FUNCTION DETERMINANTS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; LOCAL BEHAVIOR; CLASSIFICATION; UNIQUENESS; SYMMETRY;
D O I
10.1016/j.jde.2008.06.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study global positive C-4 Solutions of the geometrically interesting equation: Delta(2)u + u(-q) = 0 with q > 0 in R-3. We will establish several existence and non-existence theorems, including the classification result for q = 7 with exactly linear growth condition. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 234
页数:19
相关论文
共 26 条
[1]   Self-similar solutions for the anisotropic affine curve shortening problem [J].
Ai, J ;
Chou, KS ;
Wei, JC .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (03) :311-337
[2]   ESTIMATES AND EXTREMALS FOR ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
BRANSON, TP ;
CHANG, SYA ;
YANG, PC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :241-262
[3]   GROUP-REPRESENTATIONS ARISING FROM LORENTZ CONFORMAL GEOMETRY [J].
BRANSON, TP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (02) :199-291
[4]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[5]  
Chang P. C., 1999, CONT MATH, V237, P9, DOI DOI 10.1090/CONM/237/1710786
[6]   EXTREMAL METRICS OF ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
CHANG, SYA ;
YANG, PC .
ANNALS OF MATHEMATICS, 1995, 142 (01) :171-212
[7]  
Chang SYA, 1997, MATH RES LETT, V4, P91
[8]  
Chang SYA, 1999, CHIC LEC M, P127
[9]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[10]  
Djadli Z, 2000, DUKE MATH J, V104, P129