Reconstructing vector bundles on curves from their direct image on symmetric powers

被引:8
作者
Biswas, Indranil [1 ]
Nagaraj, D. S. [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Symmetric power; Direct image; Curve;
D O I
10.1007/s00013-012-0440-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be an irreducible smooth complex projective curve, and let E be an algebraic vector bundle of rank r on C. Associated to E, there are vector bundles of rank nr on S (n) (C), where S (n) (C) is the n-th symmetric power of C. We prove the following: Let E (1) and E (2) be two semistable vector bundles on C, with genus . If for a fixed n, then .
引用
收藏
页码:327 / 331
页数:5
相关论文
共 6 条
[1]  
[Anonymous], 1985, GEOMETRY ALGEBRAIC C
[2]  
[Anonymous], P LOND MATH SOC
[3]  
Arbarello E., 1985, Fundamental Principles of Mathematical Sciences, V267
[4]  
Biswas I, 2011, J RAMANUJAN MATH SOC, V26, P351
[5]   Direct image and parabolic structure on symmetric product of curves [J].
Biswas, Indranil ;
Laytimi, Fatima .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (04) :773-780
[6]  
El Mazouni A, 2011, J RAMANUJAN MATH SOC, V26, P181