Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability

被引:66
作者
van Vliet, Martin H. [1 ,2 ]
Reyal, Fabien [3 ,5 ]
Horlings, Hugo M. [3 ]
van de Vijver, Marc J. [3 ,4 ]
Reinders, Marcel J. T. [1 ]
Wessels, Lodewyk F. A. [1 ,2 ]
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Informat & Commun Theory Grp, NL-2628 CD Delft, Netherlands
[2] Netherlands Canc Inst, Dept Mol Biol, Bioinformat & Stat Grp, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, Dept Pathol, NL-1066 CX Amsterdam, Netherlands
[4] Acad Med Ctr, Dept Pathol, NL-1100 DD Amsterdam, Netherlands
[5] Inst Curie, Dept Surg, F-75005 Paris, France
关键词
D O I
10.1186/1471-2164-9-375
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Michiels et al. (Lancet 2005; 365: 488-92) employed a resampling strategy to show that the genes identified as predictors of prognosis from resamplings of a single gene expression dataset are highly variable. The genes most frequently identified in the separate resamplings were put forward as a 'gold standard'. On a higher level, breast cancer datasets collected by different institutions can be considered as resamplings from the underlying breast cancer population. The limited overlap between published prognostic signatures confirms the trend of signature instability identified by the resampling strategy. Six breast cancer datasets, totaling 947 samples, all measured on the Affymetrix platform, are currently available. This provides a unique opportunity to employ a substantial dataset to investigate the effects of pooling datasets on classifier accuracy, signature stability and enrichment of functional categories. Results: We show that the resampling strategy produces a suboptimal ranking of genes, which can not be considered to be a 'gold standard'. When pooling breast cancer datasets, we observed a synergetic effect on the classification performance in 73% of the cases. We also observe a significant positive correlation between the number of datasets that is pooled, the validation performance, the number of genes selected, and the enrichment of specific functional categories. In addition, we have evaluated the support for five explanations that have been postulated for the limited overlap of signatures. Conclusion: The limited overlap of current signature genes can be attributed to small sample size. Pooling datasets results in more accurate classification and a convergence of signature genes. We therefore advocate the analysis of new data within the context of a compendium, rather than analysis in isolation.
引用
收藏
页数:22
相关论文
共 52 条
[11]   International Web-based consultation on priorities for translational breast cancer research [J].
Dowsett, Mitch ;
Goldhirsch, Aron ;
Hayes, Daniel F. ;
Senn, Hans-Joerg ;
Wood, William ;
Viale, Giuseppe .
BREAST CANCER RESEARCH, 2007, 9 (06)
[12]   Outcome signature genes in breast cancer: is there a unique set? [J].
Ein-Dor, L ;
Kela, I ;
Getz, G ;
Givol, D ;
Domany, E .
BIOINFORMATICS, 2005, 21 (02) :171-178
[13]   Class III β-tubulin overexpression is a marker of poor clinical outcome in advanced ovarian cancer patients [J].
Ferrandina, G ;
Zannoni, GF ;
Martinelli, E ;
Paglia, A ;
Gallotta, V ;
Mozzetti, S ;
Scambia, G ;
Ferlini, C .
CLINICAL CANCER RESEARCH, 2006, 12 (09) :2774-2779
[14]   Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression pro-filing study [J].
Gong, Yun ;
Yan, Kai ;
Lin, Feng ;
Anderson, Keith ;
Sotiriou, Christos ;
Andre, Fabrice ;
Holmes, Frankie A. ;
Valero, Vicente ;
Booser, Daniel ;
Pippen, John E., Jr. ;
Vukelja, Svetislava ;
Gomez, Henry ;
Mejia, Jaime ;
Barajas, Luis J. ;
Hess, Kenneth R. ;
Sneige, Nour ;
Hortobagyi, Gabriel N. ;
Pusztai, Lajos ;
Symmans, W. Fraser .
LANCET ONCOLOGY, 2007, 8 (03) :203-211
[15]   The nature of truth: Simpson's Paradox and the limits of statistical data [J].
Heydtmann, M .
QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2002, 95 (04) :247-249
[16]   Summaries of affymetrix GeneChip probe level data [J].
Irizarry, RA ;
Bolstad, BM ;
Collin, F ;
Cope, LM ;
Hobbs, B ;
Speed, TP .
NUCLEIC ACIDS RESEARCH, 2003, 31 (04) :e15
[17]   Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas [J].
Kreike, Bas ;
van Kouwenhove, Marieke ;
Horlings, Hugo ;
Weigelt, Britta ;
Peterse, Hans ;
Bartelink, Harry ;
van de Vijver, Marc J. .
BREAST CANCER RESEARCH, 2007, 9 (05)
[18]   The chemokine CX3CL1 reduces migration and increases adhesion of neurons with mechanisms dependent on the β1 integrin subunit [J].
Lauro, Clotilde ;
Catalano, Myriam ;
Trettel, Flavia ;
Mainiero, Fabrizio ;
Ciotti, Maria Teresa ;
Eusebi, Fabrizio ;
Limatola, Cristina .
JOURNAL OF IMMUNOLOGY, 2006, 177 (11) :7599-7606
[19]   Class III β-tubulin, a marker of resistance to paclitaxel, is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia [J].
Lee, K. M. ;
Cao, D. ;
Itami, A. ;
Pour, P. M. ;
Hruban, R. H. ;
Maitra, A. ;
Ouellette, M. M. .
HISTOPATHOLOGY, 2007, 51 (04) :539-546
[20]   Capturing heterogeneity in gene expression studies by surrogate variable analysis [J].
Leek, Jeffrey T. ;
Storey, John D. .
PLOS GENETICS, 2007, 3 (09) :1724-1735