Identifying multi-layer gene regulatory modules from multi-dimensional genomic data

被引:102
作者
Li, Wenyuan [1 ]
Zhang, Shihua [2 ]
Liu, Chun-Chi [3 ]
Zhou, Xianghong Jasmine [1 ]
机构
[1] Univ So Calif, Dept Biol Sci, Program Mol & Computat Biol, Los Angeles, CA 90089 USA
[2] Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[3] Natl Chung Hsing Univ, Inst Genom & Bioinformat, Taichung 402, Taiwan
基金
美国国家卫生研究院; 中国国家自然科学基金; 美国国家科学基金会;
关键词
SINGULAR-VALUE DECOMPOSITION; MESSENGER-RNA EXPRESSION; PARTIAL LEAST-SQUARES; OVARIAN-CANCER; INTEGRATIVE ANALYSIS; DIMENSION REDUCTION; MICROARRAY DATA; CELL; PLS; METHYLATION;
D O I
10.1093/bioinformatics/bts476
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Eukaryotic gene expression (GE) is subjected to precisely coordinated multi-layer controls, across the levels of epigenetic, transcriptional and post-transcriptional regulations. Recently, the emerging multi-dimensional genomic dataset has provided unprecedented opportunities to study the cross-layer regulatory interplay. In these datasets, the same set of samples is profiled on several layers of genomic activities, e. g. copy number variation (CNV), DNA methylation (DM), GE and microRNA expression (ME). However, suitable analysis methods for such data are currently sparse. Results: In this article, we introduced a sparse Multi-Block Partial Least Squares (sMBPLS) regression method to identify multi-dimensional regulatory modules from this new type of data. A multi-dimensional regulatory module contains sets of regulatory factors from different layers that are likely to jointly contribute to a local 'gene expression factory'. We demonstrated the performance of our method on the simulated data as well as on The Cancer Genomic Atlas Ovarian Cancer datasets including the CNV, DM, ME and GE data measured on 230 samples. We showed that majority of identified modules have significant functional and transcriptional enrichment, higher than that observed in modules identified using only a single type of genomic data. Our network analysis of the modules revealed that the CNV, DM and microRNA can have coupled impact on expression of important oncogenes and tumor suppressor genes.
引用
收藏
页码:2458 / 2466
页数:9
相关论文
共 59 条
[1]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[2]   AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth [J].
Altomare, DA ;
Wang, HQ ;
Skele, KL ;
De Rienzo, A ;
Klein-Szanto, AJ ;
Godwin, AK ;
Testa, JR .
ONCOGENE, 2004, 23 (34) :5853-5857
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression [J].
Bagnato, A ;
Rosanò, L ;
Spinella, F ;
Di Castro, V ;
Tecce, R ;
Natali, PG .
CANCER RESEARCH, 2004, 64 (04) :1436-1443
[5]   Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].
Baskerville, S ;
Bartel, DP .
RNA, 2005, 11 (03) :241-247
[6]   Partial least squares: a versatile tool for the analysis of high-dimensional genomic data [J].
Boulesteix, Anne-Laure ;
Strimmer, Korbinian .
BRIEFINGS IN BIOINFORMATICS, 2007, 8 (01) :32-44
[7]   Cytotoxic response of ovarian cancer cell lines to IFN-γ is associated with sustained induction of IRF-1 and p21 mRNA [J].
Burke, F ;
Smith, PD ;
Crompton, MR ;
Upton, C ;
Balkwill, FR .
BRITISH JOURNAL OF CANCER, 1999, 80 (08) :1236-1244
[8]   Construction and Analysis of an Integrated Regulatory Network Derived from High-Throughput Sequencing Data [J].
Cheng, Chao ;
Yan, Koon-Kiu ;
Hwang, Woochang ;
Qian, Jiang ;
Bhardwaj, Nitin ;
Rozowsky, Joel ;
Lu, Zhi John ;
Niu, Wei ;
Alves, Pedro ;
Kato, Masaomi ;
Snyder, Michael ;
Gerstein, Mark .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (11)
[9]   Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract [J].
Cheng, WJ ;
Liu, JS ;
Yoshida, H ;
Rosen, D ;
Naora, H .
NATURE MEDICINE, 2005, 11 (05) :531-537
[10]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068