Conduction properties of acceptor-doped BaTiO3-Bi(Zn1/2Ti1/2)O3-based ceramics

被引:4
作者
McQuade, Ryan R. [1 ]
Mardilovich, Pavel [1 ]
Kumar, Nitish [2 ]
Cann, David P. [1 ]
机构
[1] Oregon State Univ, Sch Mech Ind & Mfg Engn, Mat Sci, Corvallis, OR 97331 USA
[2] Univ New South Wales, Mat Sci & Engn, Sydney, NSW, Australia
基金
美国国家科学基金会;
关键词
A-SITE NONSTOICHIOMETRY; PEROVSKITE; MECHANISMS; DIFFUSION;
D O I
10.1007/s10853-020-05175-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A series of acceptor-doped ceramics based on the solid solution, (1-x)BaTiO3-xBi(Zn1/2Ti1/2)O-3 (BT-BZT), where x = 0.1, 0.2, 0.3, 0.4, were prepared via solidstate synthesis to investigate the effect of doping and BZT content on conduction properties. Impedance spectroscopy measurements showed an increase in conductivity through acceptor doping with Mg on the Ti-site (Mg-Ti ''). Ceramics of the composition, 0.80BaTiO(3)-0.20Bi(Zn1/2Ti1/2)O-3 with 3 mol% Mg-Ti '', showed the highest conductivity in this study at 1.28 mScm(-1) (similar to 600 degrees C), an order of magnitude improvement over the stoichiometric composition. Variable pO(2) impedance measurements revealed p-type conductivity in the grain while EMF measurements showed that above similar to 550 degrees C, ions are the dominant charge carriers (transference number, t(i) = 0.91 at 735 degrees C). Similarly, all 3 mol% Mg-doped compositions above x = 0.1 were primarily ionic conductors with transference numbers above t(i) = 0.79 (735 degrees C). X-ray diffraction data showed a pseudocubic primary phase for all samples with evidence of additional impurity phases accompanying samples with 3 mol% Mg-Ti '' or greater.
引用
收藏
页码:16290 / 16299
页数:10
相关论文
共 30 条
[1]   Current Understanding of Structure-Processing-Property Relationships in BaTiO3-Bi(M)O3 Dielectrics [J].
Beuerlein, Michaela A. ;
Kumar, Nitish ;
Usher, Tedi-Marie ;
James Brown-Shaklee, Harlan ;
Raengthon, Natthaphon ;
Reaney, Ian M. ;
Cann, David P. ;
Jones, Jacob L. ;
Brennecka, Geoff L. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (09) :2849-2870
[2]   Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides [J].
De Souza, R. A. .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (40) :6326-6342
[3]  
Irvine J. T. S., 1990, Advanced Materials, V2, P132, DOI 10.1002/adma.19900020304
[4]  
Jaffe B., 1971, Piezoelectric Ceramics, P328
[5]  
Jun YW, 2017, J PHYS CHEM B, V52, P668
[6]  
Kishi H, 2003, JPN J APPL PHYS 1, V42, P1, DOI 10.1143/JJAP.42.11
[7]   Defect mechanisms in BaTiO3-BiMO3 ceramics [J].
Kumar, Nitish ;
Patterson, Eric A. ;
Froemling, Till ;
Gorzkowski, Edward P. ;
Eschbach, Peter ;
Love, Ian ;
Mueller, Michael P. ;
De Souza, Roger A. ;
Tucker, Julie ;
Reese, Steven R. ;
Cann, David P. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (06) :2376-2390
[8]   Synthesis and electrical properties of BaBiO3 and high resistivity BaTiO3-BaBiO3 ceramics [J].
Kumar, Nitish ;
Golledge, Stephen L. ;
Cann, David P. .
JOURNAL OF ADVANCED DIELECTRICS, 2016, 6 (04)
[9]   Conduction Mechanisms in BaTiO3-Bi(Zn1/2Ti1/2)O3 Ceramics [J].
Kumar, Nitish ;
Patterson, Eric A. ;
Froemling, Till ;
Cann, David P. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (09) :3047-3054
[10]   Tailoring transport properties through nonstoichiometry in BaTiO3-BiScO3 and SrTiO3-Bi(Zn1/2Ti1/2)O3 for capacitor applications [J].
Kumar, Nitish ;
Cann, David P. .
JOURNAL OF MATERIALS SCIENCE, 2016, 51 (20) :9404-9414