Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline

被引:109
作者
Zhang, H [1 ]
Li, HX [1 ]
Cheng, HM [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
关键词
D O I
10.1021/jp060193y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwalled carbon nanotubes (MWNTs) functionalized with a water-soluble conducting polymer, sulfonated polyaniline ( SPAN), were prepared by in situ polymerization of aniline followed by sulfonation with chlorosulfonic acid in an inert solvent and by hydrolysis in water. Electron microscopy, laser Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-vis absorption spectroscopy were employed to characterize the morphology and chemical structure of the resulting product. The results show that the quinonoid structure of SPAN preferentially interacts with the nanotubes and is stabilized by strong pi-pi interaction between two components. The structure of MWNTs was not perturbed by the incorporation of SPAN, since the pi-pi interaction between MWNTs and SPAN is much weaker in comparison to that of the carbon covalent bond. The SPAN functionalized MWNTs are highly dispersible in water, thus opening new possibilities for their prospective technological applications.
引用
收藏
页码:9095 / 9099
页数:5
相关论文
共 45 条
[1]   Covalent surface chemistry of single-walled carbon nanotubes [J].
Banerjee, S ;
Hemraj-Benny, T ;
Wong, SS .
ADVANCED MATERIALS, 2005, 17 (01) :17-29
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]   Chemically functionalized single-walled carbon nanotubes as ammonia sensors [J].
Bekyarova, E ;
Davis, M ;
Burch, T ;
Itkis, ME ;
Zhao, B ;
Sunshine, S ;
Haddon, RC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (51) :19717-19720
[4]   Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers [J].
Chen, J ;
Liu, HY ;
Weimer, WA ;
Halls, MD ;
Waldeck, DH ;
Walker, GC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9034-9035
[5]   Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film [J].
Chen, SA ;
Hwang, GW .
MACROMOLECULES, 1996, 29 (11) :3950-3955
[6]   Synthesis of a new polyaniline/nanotube composite:: "in-situ" polymerisation and charge transfer through site-selective interaction [J].
Cochet, M ;
Maser, WK ;
Benito, AM ;
Callejas, MA ;
Martínez, MT ;
Benoit, JM ;
Schreiber, J ;
Chauvet, O .
CHEMICAL COMMUNICATIONS, 2001, (16) :1450-1451
[7]  
Cochet M, 2000, J RAMAN SPECTROSC, V31, P1041, DOI 10.1002/1097-4555(200012)31:12<1041::AID-JRS641>3.0.CO
[8]  
2-R
[9]   Selective interaction of a semiconjugated organic polymer with single-wall nanotubes [J].
Dalton, AB ;
Stephan, C ;
Coleman, JN ;
McCarthy, B ;
Ajayan, PM ;
Lefrant, S ;
Bernier, P ;
Blau, WJ ;
Byrne, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (43) :10012-10016
[10]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99