Multiple positive solutions to a class of singular boundary value problems for the one-dimensional p-laplacian

被引:0
作者
Jiang, DQ [1 ]
Xu, XJ [1 ]
机构
[1] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
关键词
multiple positive solutions; fixed-point theorem; p-Laplacian; singular; nonlinear boundary value problem;
D O I
10.1016/S0898-1221(04)90054-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of multiple positive solutions to the singular nonlinear boundary value problem (phi(u'))' + q(t)f(u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) + B(u'(1)) = 0, by using the Leray-Schauder alternative and the fixed-point theorem in cones, where phi(s) = \s\(p-2)s, p > 1. The singularity may appear at u = 0 and t = 0. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:667 / 681
页数:15
相关论文
共 14 条
[1]   Twin solutions to singular Dirichlet problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :433-445
[2]   Twin solutions to singular boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2085-2094
[3]   Nonlinear superlinear singular and nonsingular second order boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :60-95
[4]   Existence theory for single and multiple solutions to singular positone boundary value problems [J].
Agarwal, RP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :393-414
[5]   Existence results for the problem (φ(u′))′=f(t,u,u′) with nonlinear boundary conditions [J].
Cabada, A ;
Pouso, RL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (02) :221-231
[6]  
Jiang Daqing, 1999, ANN POL MATH, V71, P19
[7]   Multiple positive solutions to singular boundary value problems for superlinear higher-order ODEs [J].
Jiang, DQ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (2-3) :249-259
[8]   Upper and lower solutions method and a singular superlinear boundary value problem for the one-dimensional p-Laplacian [J].
Jiang, DQ .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (6-7) :927-940
[9]   Upper and lower solution method and a singular boundary value problem for the one-dimensional p-Laplacian [J].
Jiang, DQ ;
Gao, WJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (02) :631-648
[10]  
JIANG DQ, 2000, ANN POL MATH, V75, P257