Interlayer coupling-induced controllable negative differential thermal resistance in graphene/h-BN van der Waals heterostructure

被引:7
作者
Chen, Xue-Kun [1 ]
Tan, Jia-Ling [1 ]
Pang, Min [1 ]
Xie, Zhong-Xiang [2 ]
Zhou, Wu-Xing [3 ,4 ]
Liu, Jun [1 ]
机构
[1] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
[2] Hunan Inst Technol, Dept Math & Phys, Hengyang 421002, Peoples R China
[3] Hunan Univ Sci & Technol, Sch Mat Sci & Engn, Xiangtan 411201, Peoples R China
[4] Hunan Univ Sci & Technol, Hunan Prov Key Lab Adv Mat New Energy Storage & Co, Xiangtan 411201, Peoples R China
基金
中国国家自然科学基金;
关键词
RECTIFICATION; TRANSPORT; CONDUCTIVITY; DEFECTS;
D O I
10.1063/5.0103901
中图分类号
O59 [应用物理学];
学科分类号
摘要
The van der Waals (vdW) heterostructures employing graphene and hexagonal boron nitride (h-BN) have emerged as a typical system for building emergent two-dimensional devices, such as atomically thin transistors or capacitors. Herein, we study the nonlinear thermal transport in such vdW heterostructure by non-equilibrium molecular dynamics simulations. The results show that an obvious negative differential thermal resistance (NDTR) phenomenon can be observed under small temperature bias when the interlayer coupling becomes stronger. The vibrational spectra analysis manifests that the phonon filtering mechanism induced by interlayer coupling greatly hinders the interfacial thermal transport. To obtain the optimum conditions, the dependence of NDTR on the system length, lateral width, external temperature, and defect density is taken into account. Our findings extend the phonon filtering mechanism to thermal information processing. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:7
相关论文
共 65 条
[11]   A local resonance mechanism for thermal rectification in pristine/branched graphene nanoribbon junctions [J].
Chen, Xue-Kun ;
Liu, Jun ;
Xie, Zhong-Xiang ;
Zhang, Yong ;
Deng, Yuan-Xiang ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2018, 113 (12)
[12]   A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures [J].
Chen, Xue-Kun ;
Liu, Jun ;
Peng, Zhi-Hua ;
Du, Dan ;
Chen, Ke-Qiu .
APPLIED PHYSICS LETTERS, 2017, 110 (09)
[13]   Interplay between mass-impurity and vacancy phonon scattering effects on the thermal conductivity of doped cadmium oxide [J].
Donovan, Brian F. ;
Sachet, Edward ;
Maria, Jon-Paul ;
Hopkins, Patrick E. .
APPLIED PHYSICS LETTERS, 2016, 108 (02)
[14]   Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces [J].
Feng, Tianli ;
Yao, Wenjun ;
Wang, Zuyuan ;
Shi, Jingjing ;
Li, Chuang ;
Cao, Bingyang ;
Ruan, Xiulin .
PHYSICAL REVIEW B, 2017, 95 (19)
[15]   A Series Circuit of Thermal Rectifiers: An Effective Way to Enhance Rectification Ratio [J].
Hu, Shiqian ;
An, Meng ;
Yang, Nuo ;
Li, Baowen .
SMALL, 2017, 13 (06)
[16]   Excellent thermoelectric performance induced by interface effect in MoS2/MoSe2 van der Waals heterostructure [J].
Jia, Pin-Zhen ;
Zeng, Yu-Jia ;
Wu, Dan ;
Pan, Hui ;
Cao, Xuan-Hao ;
Zhou, Wu-Xing ;
Xie, Zhong-Xiang ;
Zhang, Ji-Xu ;
Chen, Ke-Qiu .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (05)
[17]   High-temperature silicon thermal diode and switch [J].
Kasprzak, Maciej ;
Sledzinska, Marianna ;
Zaleski, Karol ;
Iatsunskyi, Igor ;
Alzina, Francesc ;
Volz, Sebastian ;
Sotomayor Torres, Clivia M. ;
Graczykowski, Bartlomiej .
NANO ENERGY, 2020, 78
[18]   Strategies for Manipulating Phonon Transport in Solids [J].
Kim, Hoon ;
Park, Gimin ;
Park, Sungjin ;
Kim, Woochul .
ACS NANO, 2021, 15 (02) :2182-2196
[19]   Negative differential thermal resistance and thermal transistor [J].
Li, BW ;
Wang, L ;
Casati, G .
APPLIED PHYSICS LETTERS, 2006, 88 (14)
[20]   Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures [J].
Li, Fan ;
Wang, Jun ;
Xia, Guodong ;
Li, Zhigang .
NANOSCALE, 2019, 11 (27) :13051-13057