Synergistic effect of graphene nanosheets and carbonyl iron-nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites

被引:227
作者
Ren, Fang [1 ]
Song, Danping [1 ]
Li, Zhen [1 ]
Jia, Lichuan [2 ]
Zhao, Yuchen [3 ]
Yan, Dingxiang [2 ]
Ren, Penggang [1 ,2 ]
机构
[1] Xian Univ Technol, Fac Printing & Packaging Engn, Xian 710048, Shaanxi, Peoples R China
[2] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
BORON-NITRIDE; OXIDE; NANOCOMPOSITES; LIGHTWEIGHT; FILM; POLYSTYRENE; EFFICIENCY; NANOTUBES;
D O I
10.1039/c7tc05213h
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a promising cyanate ester nanocomposite with an excellent electromagnetic interference shielding effectiveness (EMI SE) and high thermal conductivity was fabricated by compounding graphene nanosheets (GNSs) and magnetic carbonyl iron-nickel alloy powder (CINAP) via a solution blending method and subsequent hot-pressing. The obtained 5 wt% GNSs/cyanate ester (CE) nanocomposite possesses the outstanding EMI SE of 38 dB and this property was synergistically enhanced to attain the value of 55 dB with the presence of 20 wt% CINAP. In addition, the GNSs/CINAP/CE nanocomposite with 5 wt% GNSs and 15 wt% CINAP exhibits high thermal conductivity (K = 4.13 W m(-1) K-1). This synergistic enhancement is significantly affected by the formation of the efficient 3D electric and thermally conductive pathways as well as the dispersion of the incorporated fillers. This highly thermally conducting CE nanocomposite with the efficient EMI shielding properties has a potential to be used in advanced electronic packaging.
引用
收藏
页码:1476 / 1486
页数:11
相关论文
共 49 条
[1]   Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy [J].
Che, Junjin ;
Wu, Kai ;
Lin, Yunjie ;
Wang, Ke ;
Fu, Qiang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 99 :32-40
[2]   High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding [J].
Chen, Yu ;
Zhang, Hao-Bin ;
Yang, Yanbing ;
Wang, Mu ;
Cao, Anyuan ;
Yu, Zhong-Zhen .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (03) :447-455
[3]   Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding [J].
Chen, Yu ;
Zhang, Hao-Bin ;
Huang, Yaqin ;
Jiang, Yue ;
Zheng, Wen-Ge ;
Yu, Zhong-Zhen .
COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 118 :178-185
[4]   Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles [J].
Chen, Yu ;
Wang, Yongli ;
Zhang, Hao-Bin ;
Li, Xiaofeng ;
Gui, Chen-Xi ;
Yu, Zhong-Zhen .
CARBON, 2015, 82 :67-76
[5]   Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding [J].
Chen, Zongping ;
Xu, Chuan ;
Ma, Chaoqun ;
Ren, Wencai ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2013, 25 (09) :1296-1300
[6]   Thermal Conductive and Mechanical properties of Polymeric Composites Based on Solution-Exfoliated Boron Nitride and Graphene Nanosheets: A Morphology-Promoted Synergistic Effect [J].
Cui, Xieliang ;
Ding, Peng ;
Zhuang, Nan ;
Shi, Liyi ;
Song, Na ;
Tang, Shengfu .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) :19068-19075
[7]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[8]   Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J].
Fu, Min ;
Jiao, Qingze ;
Zhao, Yun ;
Li, Hansheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (03) :735-744
[9]   Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane [J].
Guo, Hong ;
Li, Xin ;
Li, Baoan ;
Wang, Jixiao ;
Wang, Shichang .
MATERIALS & DESIGN, 2017, 114 :355-363
[10]   Synthesis and microwave absorption of uniform hematite nanoparticles and their core-shell mesoporous silica nanocomposites [J].
Guo, Xiaohui ;
Deng, Yonghui ;
Gu, Dong ;
Che, Renchao ;
Zhao, Dongyuan .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (37) :6706-6712