Gehring-Hayman Theorem for conformal deformations

被引:5
|
作者
Koskela, Pekka [1 ]
Lammi, Paivi [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
基金
芬兰科学院;
关键词
Conformal deformations; uniform space; Whitney covering; SPACES;
D O I
10.4171/CMH/282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study conformal deformations of a uniform space that satisfies the Ahlfors Q-regularity condition on balls of Whitney type. We verify the Gehring-Hayman Theorem by using a Whitney covering of the space.
引用
收藏
页码:185 / 203
页数:19
相关论文
共 50 条
  • [1] The Gehring-Hayman inequality in conformal mapping
    Pommerenke, C
    Rohde, S
    QUASICONFORMAL MAPPINGS AND ANALYSIS: A COLLECTION OF PAPERS HONORING F.W. GEHRING, 1998, : 309 - 319
  • [2] Some remarks on the Gehring-Hayman theorem
    Rogovin, Sari
    Shibahara, Hyogo
    Zhou, Qingshan
    ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 141 - 152
  • [3] CONFORMAL METRICS ON THE UNIT BALL: THE GEHRING-HAYMAN PROPERTY AND THE VOLUME GROWTH
    Nieminen, Tomi
    Tossavainen, Timo
    CONFORMAL GEOMETRY AND DYNAMICS, 2009, 13 : 225 - 231
  • [4] THE GEHRING-HAYMAN INEQUALITY FOR QUASIHYPERBOLIC GEODESICS
    HEINONEN, J
    ROHDE, S
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 : 393 - 405
  • [5] A Gehring-Hayman Inequality for Strongly Pseudoconvex Domains
    Kosinski, Lukasz
    Nikolov, Nikolai
    Thomas, Pascal J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (11) : 9165 - 9177
  • [6] The Gehring-Hayman type theorem on pseudoconvex domains of finite type in C2
    Li, Haichou
    Pu, Xingsi
    Wang, Hongyu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2785 - 2799
  • [7] A DISTANCE ESTIMATE ON THE BOUNDARY OF A CONFORMAL DEFORMATION OF THE UNIT BALL SATISFYING A HARNACK INEQUALITY AND THE GEHRING-HAYMAN PROPERTY
    Tossavainen, Timo
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (01) : 175 - 178
  • [8] On the Gehring-Hayman property, the Privalov-Riesz theorems, and doubling measures
    Llorente, JG
    MICHIGAN MATHEMATICAL JOURNAL, 2004, 52 (03) : 553 - 571
  • [9] 凸域上拟双曲测地线直径的Gehring-Hayman恒等式
    钱伟茂
    张益池
    纯粹数学与应用数学, 2013, 29 (03) : 241 - 245+274
  • [10] On a theorem of Hayman
    A. M. Gaîsin
    Siberian Mathematical Journal, 1998, 39 : 431 - 445