Asymptotics and the role of minimal models

被引:74
作者
Batterman, RW [1 ]
机构
[1] Ohio State Univ, Dept Philosophy, Columbus, OH 43201 USA
关键词
D O I
10.1093/bjps/53.1.21
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
A traditional view of mathematical modeling holds, roughly, that the more details of the phenomenon being modeled that are represented in the model, the better the model is. This paper argues that often times this 'details is better' approach is misguided. One ought, in certain circumstances, to search for an exactly solvable minimal model-one which is, essentially, a caricature of the physics of the phenomenon in question.
引用
收藏
页码:21 / 38
页数:18
相关论文
共 11 条
[1]  
[Anonymous], 1987, Dimensional analysis
[2]  
Batterman R.W., 2002, DEVIL DETAILS ASYMPT
[3]   Why Equilibrium Statistical Mechanics works: Universality and the renormalization group [J].
Batterman, RW .
PHILOSOPHY OF SCIENCE, 1998, 65 (02) :183-208
[4]   EXPLANATORY INSTABILITY [J].
BATTERMAN, RW .
NOUS, 1992, 26 (03) :325-348
[5]   A 'modern' (=Victorian?) attitude towards scientific understanding [J].
Batterman, RW .
MONIST, 2000, 83 (02) :228-257
[6]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[7]   SELECTION, STABILITY AND RENORMALIZATION [J].
CHEN, LY ;
GOLDENFELD, N ;
OONO, Y ;
PAQUETTE, G .
PHYSICA A, 1994, 204 (1-4) :111-133
[8]  
GOLDENFELD N, 1989, J SCI COMP, V4, P4, DOI DOI 10.1007/BF01060993
[9]  
Goldenfeld N., 1992, LECT PHASE TRANSITIO
[10]  
Guckenheimer J., 1983, APPL MATH SCI, V42, DOI DOI 10.1115/1.3167759