Plasmon damping depends on the chemical nature of the nanoparticle interface

被引:150
作者
Foerster, Benjamin [1 ]
Spata, Vincent A. [2 ]
Carter, Emily A. [3 ]
Soennichsen, Carsten [4 ]
Link, Stephan [5 ]
机构
[1] Johannes Gutenberg Univ Mainz, Grad Sch Excellence Mat Sci Mainz, Staudinger Weg 9, D-55128 Mainz, Germany
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, Sch Engn & Appl Sci, Princeton, NJ 08544 USA
[4] Johannes Gutenberg Univ Mainz, Inst Phys Chem, Duesbergweg 10-14, D-5128 Mainz, Germany
[5] Rice Univ, Dept Chem, Dept Elect & Comp Engn, Lab Nanophoton, Houston, TX 77005 USA
来源
SCIENCE ADVANCES | 2019年 / 5卷 / 03期
基金
欧洲研究理事会;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; GOLD NANORODS; BASIS-SETS; SURFACE; SCATTERING; PSEUDOPOTENTIALS; ABSORPTION; TRANSITION; LINEWIDTH;
D O I
10.1126/sciadv.aav0704
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The chemical nature of surface adsorbates affects the localized surface plasmon resonance of metal nanoparticles. However, classical electromagnetic simulations are blind to this effect, whereas experiments are typically plagued by ensemble averaging that also includes size and shape variations. In this work, we are able to isolate the contribution of surface adsorbates to the plasmon resonance by carefully selecting adsorbate isomers, using single-particle spectroscopy to obtain homogeneous linewidths, and comparing experimental results to high-level quantum mechanical calculations based on embedded correlated wavefunction theory. Our approach allows us to indisputably show that nanoparticle plasmons are influenced by the chemical nature of the adsorbates 1,7-dicarbadodecaborane(12)-1-thiol (M1) and 1,7-dicarbadodecaborane(12)-9-thiol (M9). These surface adsorbates induce inside the metal electric dipoles that act as additional scattering centers for plasmon dephasing. In contrast, charge transfer from the plasmon to adsorbates-the most widely suggested mechanism to date-does not play a role here.
引用
收藏
页数:6
相关论文
共 78 条
[11]   DICARBA-CLOSO-DODECABORANES C2B10H12 AND THEIR DERIVATIVES [J].
BREGADZE, VI .
CHEMICAL REVIEWS, 1992, 92 (02) :209-223
[12]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[13]   THE OPTICAL-PROPERTIES OF SILVER MICROCRYSTALLITES IN DEPENDENCE ON SIZE AND THE INFLUENCE OF THE MATRIX ENVIRONMENT [J].
CHARLE, KP ;
FRANK, F ;
SCHULZE, W .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1984, 88 (04) :350-354
[14]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[15]   Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach [J].
Coronado, EA ;
Schatz, GC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (07) :3926-3934
[16]   Optical absorption and scattering spectroscopies of single nano-objects [J].
Crut, Aurelien ;
Maioli, Paolo ;
Del Fatti, Natalia ;
Vallee, Fabrice .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (11) :3921-3956
[17]   Atomistic Simulations of the Surface Coverage of Large Gold Nanocrystals [J].
Djebaili, Takieddine ;
Richardi, Johannes ;
Abel, Stephane ;
Marchi, Massimo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (34) :17791-17800
[18]   Voltage-Induced Adsorbate Damping of Single Gold Nanorod Plasmons in Aqueous Solution [J].
Dondapati, S. K. ;
Ludemann, M. ;
Mueller, R. ;
Schwieger, S. ;
Schwemer, A. ;
Haendel, B. ;
Kwiatkowski, D. ;
Djiango, M. ;
Runge, E. ;
Klar, T. A. .
NANO LETTERS, 2012, 12 (03) :1247-1252
[19]   Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes [J].
DuChene, Joseph S. ;
Tagliabue, Giulia ;
Welch, Alex J. ;
Cheng, Wen-Hui ;
Atwater, Harry A. .
NANO LETTERS, 2018, 18 (04) :2545-2550