AUTOMORPHISMS OF NON-CYCLIC p-GONAL RIEMANN SURFACES

被引:0
作者
Costa, Antonio F. [1 ]
Hidalgo, Ruben A. [2 ]
机构
[1] UNED, Fac Ciencias, Dept Matemat Fundamentales, Madrid 28040, Spain
[2] Univ La Frontera, Dept Matemat & Estadist, Casilla 54-D, Temuco 4780000, Chile
关键词
Riemann surface; Fuchsian group; automorphisms;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the order of a holomorphic automorphism of a non-cyclic p-gonal compact Riemann surface S of genus g > (p - 1)(2) is bounded above by 2(g + p - 1). We also show that this maximal order is attained for infinitely many genera. This generalises the similar result for the particular case p = 3 recently obtained by Costa-Izquierdo. More over, we also observe that the full group of holomorphic automorphisms of S is either the trivial group or is a finite cyclic group or a dihedral group or one of the Platonic groups A(4), A(5) and Sigma(4). Examples in each case a real so provided. If S admits a holomorphic automorphism of order 2 ( g + p - 1), then its full group of automorphisms is the cyclic group generated by it and every p-gonal map of S is necessarily simply branched. Finally, we note that each pair ( S, pi), where S is a non-cyclic p-gonal Riemann surface and pi is a p-gonal map, can be defined over its field of moduli. Also, if the group of automorphisms of S is different from a non-trivial cyclic group and g > ( p - 1)(2), then S can be also be defined over its field of moduli.
引用
收藏
页码:659 / 674
页数:16
相关论文
共 17 条
  • [1] ON CYCLIC TRIGONAL RIEMANN SURFACES .1.
    ACCOLA, RDM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 283 (02) : 423 - 449
  • [2] On automorphisms groups of cyclic p-gonal Riemann surfaces
    Bartolini, Gabriel
    Costa, Antonio F.
    Izquierdo, Milagros
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2013, 57 : 61 - 69
  • [3] Beardon A. F., 1983, The geometry of discrete groups, DOI [10.1007/978-1-4612-1146-4, DOI 10.1007/978-1-4612-1146-4]
  • [4] ON GALOIS EXTENSIONS OF A MAXIMAL CYCLOTOMIC FIELD
    BELYI, GV
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1980, 14 (02): : 247 - 256
  • [5] Maximal order of automorphisms of trigonal Riemann surfaces (vol 323, pg 27, 2010)
    Costa, Antonio F.
    Izquierdo, Milagros
    [J]. JOURNAL OF ALGEBRA, 2011, 341 (01) : 313 - 314
  • [6] Maximal order of automorphisms of trigonal Riemann surfaces
    Costa, Antonio F.
    Izquierdo, Milagros
    [J]. JOURNAL OF ALGEBRA, 2010, 323 (01) : 27 - 31
  • [7] Farkas H. M., 1980, GRADUATE TEXTS MATH
  • [8] Girondo E., 2012, LONDON MATH SOC STUD, V79
  • [9] Grothendieck Alexandre, 1997, London Math. Soc. Lecture Note Ser., V242, P5
  • [10] Jones G., 1995, SEM LOTHAR COMBIN, V35