Joint state and parameter estimation for uncertain stochastic nonlinear polynomial systems

被引:38
作者
Basin, Michael V. [1 ,2 ]
Loukianov, Alexander G. [2 ]
Hernandez-Gonzalez, Miguel [2 ]
机构
[1] Autonomous Univ Nuevo Leon, Dept Phys & Math Sci, San Nicolas, Nuevo Leon, Mexico
[2] Ctr Res & Grad Studies CINVESTAV, Guadalajara, Jalisco, Mexico
关键词
state estimation; Kalman filtering; identification for control; FINITE-DIMENSIONAL FILTERS; TIME; DELAY; IDENTIFICATION;
D O I
10.1080/00207721.2012.670309
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the joint state filtering and parameter identification problem for uncertain stochastic nonlinear polynomial systems with unknown parameters in the state equation over nonlinear polynomial observations, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The obtained mean-square filter for the extended state vector also serves as the mean-square identifier for the unknown parameters. Performance of the designed mean-square state filter and parameter identifier is verified for both, positive and negative, parameter values.
引用
收藏
页码:1200 / 1208
页数:9
相关论文
共 34 条
[1]  
[Anonymous], INT J ROBUST NONLINE
[3]   Optimal filtering for incompletely measured polynomial states over linear observations [J].
Basin, Michael ;
Calderon-Alvarez, Dario ;
Skliar, Mikhail .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (05) :482-494
[4]   Algebraic parameters identification of DC motors: methodology and analysis [J].
Becedas, J. ;
Mamani, G. ;
Feliu, V. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2010, 41 (10) :1241-1255
[5]   Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: The continuous-time case [J].
Charalambous, CD ;
Logothetis, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) :928-934
[6]   Adaptive stiffness estimation for compliant robotic manipulation using stochastic disturbance models [J].
Coutinho, Fernanda ;
Cortesao, Rui .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2011, 42 (08) :1241-1252
[7]   A note on sampling and parameter estimation in linear stochastic systems [J].
Duncan, TE ;
Mandl, P ;
Pasik-Duncan, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) :2120-2125
[8]   Exact finite-dimensional filters for maximum likelihood parameter estimation of continuous-time linear Gaussian systems [J].
Elliott, RJ ;
Krishnamurthy, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (06) :1908-1923
[9]   New finite-dimensional filters for parameter estimation of discrete-time linear Gaussian models [J].
Elliott, RJ ;
Krishnamurthy, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :938-951
[10]   New approach to mixed H2/H∞ filtering for polytopic discrete-time systems [J].
Gao, HJ ;
Lam, J ;
Xie, LH ;
Wang, CH .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :3183-3192