Congruences concerning Legendre polynomials II

被引:47
作者
Sun, Zhi-Hong [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223001, Jiangsu, Peoples R China
关键词
Legendre polynomial; Congruence; Character sum; Binary quadratic form; Elliptic curve; ELLIPTIC-CURVES; COMPLEX MULTIPLICATION; SUMS; SUPERCONGRUENCES;
D O I
10.1016/j.jnt.2012.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p > 3 be a prime, and let m be an integer with p inverted iota m. In the paper we solve some conjectures of Z.W. Sun concerning Sigma(p-1)(k=0) ((2k)(k))(3) /m(k) p(2)), Sigma(p-1)(k=0) ((2k)(k))((4k)(2k))/m(k) (mod p) and Sigma(p-1)(k=0) ((2k)(k))(2) ((4k)(2k))/m(k) (mod p(2)). In particular, we show that Sigma(p-1/2)(k=0) ((2k)(k))(3) equivalent to 0 (mod p(2)) for p equivalent to 3, 5, 6 (mod 7). Let {P-n(x)} be the Legendre polynomials. In the paper we also show that P-[p/4] (t) equivalent to -(6/p) Sigma(p-1)(x=0)(x(3)-3/2(3t+5)x+9t+7)/p (mod p), where t is a rational p-adic integer, [x] is the greatest integer not exceeding x and (a/p) is the Legendre symbol. As consequences we determine P-[p/4](t) (mod p) in the cases t = -5/3, -7/9, -65/63 and confirm many conjectures of Z.W. Sun. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1950 / 1976
页数:27
相关论文
共 29 条
[1]  
Ahlgren S., 2001, SYMBOLIC COMPUTATION, P1, DOI [10.1007/978-1-4613-0257-5_1, DOI 10.1007/978-1-4613-0257-5_1]
[2]  
[Anonymous], 1998, Gauss and Jacobi Sums
[3]  
[Anonymous], 1972, COMBINATORIAL IDENTI
[4]  
[Anonymous], 1987, P C ADIC ANAL
[5]   SUMS OF GAUSS, EISENSTEIN, JACOBI, JACOBSTHAL, AND BREWER [J].
BERNDT, BC ;
EVANS, RJ .
ILLINOIS JOURNAL OF MATHEMATICS, 1979, 23 (03) :374-437
[6]   ANOTHER CONGRUENCE FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1987, 25 (02) :201-210
[7]   ON THE MOD P2 DETERMINATION OF ((P-1)/2(P-1)/4) [J].
CHOWLA, S ;
DWORK, B ;
EVANS, R .
JOURNAL OF NUMBER THEORY, 1986, 24 (02) :188-196
[8]   SUPERCONGRUENCES OF ATKIN AND SWINNERTON-DYER TYPE FOR LEGENDRE POLYNOMIALS [J].
COSTER, MJ ;
VANHAMME, L .
JOURNAL OF NUMBER THEORY, 1991, 38 (03) :265-286
[9]  
COX DA, 1989, PRIMES FORMS X2 NY2
[10]  
Ireland K., 1990, CLASSICAL INTRO MODE, V84