Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae

被引:21
作者
Usher, Jane [1 ]
Balderas-Hernandez, Victor [2 ]
Quon, Peter [1 ]
Gold, Nicholas D. [3 ]
Martin, Vincent J. J. [3 ]
Mahadevan, Radhakrishnan [2 ]
Baetz, Kristin [1 ]
机构
[1] Univ Ottawa, Ottawa Inst Syst Biol, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada
[2] Univ Toronto, Inst Biomat & Biomed Engn, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[3] Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
recombinant yeast; ethanol; xylose; functional genomics; chemical genomics; ETHANOLIC FERMENTATION; XYLITOL DEHYDROGENASE; RIBOSOMAL-PROTEINS; PROTEOME ANALYSIS; PICHIA-STIPITIS; YEAST; XYLULOKINASE; EXPRESSION; STRAINS; METABOLISM;
D O I
10.1534/g3.111.000695
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains grow poorly on xylose and require further improvement through rational engineering or evolutionary adaptation. To identify unknown genes that contribute to improved xylose fermentation in these recombinant S. cerevisiae, we performed genome-wide synthetic interaction screens to identify deletion mutants that impact xylose utilization of strains expressing the xylose isomerase gene XYLA from Piromyces sp. E2 alone or with an additional copy of the endogenous xylulokinase gene XKS1. We also screened the deletion mutant array to identify mutants whose growth is affected by xylose. Our genetic network reveals that more than 80 nonessential genes from a diverse range of cellular processes impact xylose utilization. Surprisingly, we identified four genes, ALP1, ISC1, RPL20B, and BUD21, that when individually deleted improved xylose utilization of both S. cerevisiae S288C and CEN. PK strains. We further characterized BUD21 deletion mutant cells in batch fermentations and found that they produce ethanol even the absence of exogenous XYLA. We have demonstrated that the ability of laboratory strains of S. cerevisiae to utilize xylose as a sole carbon source is suppressed, which implies that S. cerevisiae may not require the addition of exogenous genes for efficient xylose fermentation.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 70 条
[61]   Systematic genetic analysis with ordered arrays of yeast deletion mutants [J].
Tong, AHY ;
Evangelista, M ;
Parsons, AB ;
Xu, H ;
Bader, GD ;
Pagé, N ;
Robinson, M ;
Raghibizadeh, S ;
Hogue, CWV ;
Bussey, H ;
Andrews, B ;
Tyers, M ;
Boone, C .
SCIENCE, 2001, 294 (5550) :2364-2368
[62]  
Tong Amy Hin Yan, 2006, Methods Mol Biol, V313, P171
[63]   An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains [J].
van Dijken, JP ;
Bauer, J ;
Brambilla, L ;
Duboc, P ;
Francois, JM ;
Gancedo, C ;
Giuseppin, MLF ;
Heijnen, JJ ;
Hoare, M ;
Lange, HC ;
Madden, EA ;
Niederberger, P ;
Nielsen, J ;
Parrou, JL ;
Petit, T ;
Porro, D ;
Reuss, M ;
van Riel, N ;
Rizzi, M ;
Steensma, HY ;
Verrips, CT ;
Vindelov, J ;
Pronk, JT .
ENZYME AND MICROBIAL TECHNOLOGY, 2000, 26 (9-10) :706-714
[64]   Development of efficient xylose fermentation in Saccharomyces cereviside:: Xylose lsomerase as a key component [J].
van Maris, Antonius J. A. ;
Winkler, Aaron A. ;
Kuyper, Marko ;
de Laat, Wirn T. A. M. ;
van Dijken, Johannes P. ;
Pronk, Jack T. .
BIOFUELS, 2007, 108 :179-204
[65]   Yeast metabolic engineering for hemicellulosic ethanol production [J].
Van Vleet, J. H. ;
Jeffries, T. W. .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (03) :300-306
[66]   Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose [J].
Van Vleet, Jennifer Headman ;
Jeffries, Thomas W. ;
Olsson, Lisbeth .
METABOLIC ENGINEERING, 2008, 10 (06) :360-369
[67]   Ribosome synthesis in Saccharomyces cerevisiae [J].
Venema, J ;
Tollervey, D .
ANNUAL REVIEW OF GENETICS, 1999, 33 :261-311
[68]   Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase [J].
Walfridsson, M ;
Bao, XM ;
Anderlund, M ;
Lilius, G ;
Bulow, L ;
HahnHagerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (12) :4648-4651
[69]   FERMENTATION OF A PENTOSE BY YEASTS [J].
WANG, PY ;
SHOPSIS, C ;
SCHNEIDER, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1980, 94 (01) :248-254
[70]   Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae [J].
Wenger, Jared W. ;
Schwartz, Katja ;
Sherlock, Gavin .
PLOS GENETICS, 2010, 6 (05) :18