Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae

被引:21
作者
Usher, Jane [1 ]
Balderas-Hernandez, Victor [2 ]
Quon, Peter [1 ]
Gold, Nicholas D. [3 ]
Martin, Vincent J. J. [3 ]
Mahadevan, Radhakrishnan [2 ]
Baetz, Kristin [1 ]
机构
[1] Univ Ottawa, Ottawa Inst Syst Biol, Dept Biochem Microbiol & Immunol, Ottawa, ON K1H 8M5, Canada
[2] Univ Toronto, Inst Biomat & Biomed Engn, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[3] Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada
来源
G3-GENES GENOMES GENETICS | 2011年 / 1卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
recombinant yeast; ethanol; xylose; functional genomics; chemical genomics; ETHANOLIC FERMENTATION; XYLITOL DEHYDROGENASE; RIBOSOMAL-PROTEINS; PROTEOME ANALYSIS; PICHIA-STIPITIS; YEAST; XYLULOKINASE; EXPRESSION; STRAINS; METABOLISM;
D O I
10.1534/g3.111.000695
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Though highly efficient at fermenting hexose sugars, Saccharomyces cerevisiae has limited ability to ferment five-carbon sugars. As a significant portion of sugars found in cellulosic biomass is the five-carbon sugar xylose, S. cerevisiae must be engineered to metabolize pentose sugars, commonly by the addition of exogenous genes from xylose fermenting fungi. However, these recombinant strains grow poorly on xylose and require further improvement through rational engineering or evolutionary adaptation. To identify unknown genes that contribute to improved xylose fermentation in these recombinant S. cerevisiae, we performed genome-wide synthetic interaction screens to identify deletion mutants that impact xylose utilization of strains expressing the xylose isomerase gene XYLA from Piromyces sp. E2 alone or with an additional copy of the endogenous xylulokinase gene XKS1. We also screened the deletion mutant array to identify mutants whose growth is affected by xylose. Our genetic network reveals that more than 80 nonessential genes from a diverse range of cellular processes impact xylose utilization. Surprisingly, we identified four genes, ALP1, ISC1, RPL20B, and BUD21, that when individually deleted improved xylose utilization of both S. cerevisiae S288C and CEN. PK strains. We further characterized BUD21 deletion mutant cells in batch fermentations and found that they produce ethanol even the absence of exogenous XYLA. We have demonstrated that the ability of laboratory strains of S. cerevisiae to utilize xylose as a sole carbon source is suppressed, which implies that S. cerevisiae may not require the addition of exogenous genes for efficient xylose fermentation.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 70 条
[1]   Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae [J].
Ando, A ;
Tanaka, F ;
Murata, Y ;
Takagi, H ;
Shima, J .
FEMS YEAST RESEARCH, 2006, 6 (02) :249-267
[2]   Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source [J].
Attfield, Paul V. ;
Bell, Philip J. L. .
FEMS YEAST RESEARCH, 2006, 6 (06) :862-868
[3]   DIRECT EVIDENCE FOR A XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE [J].
BATT, CA ;
CARVALLO, S ;
EASSON, DD ;
AKEDO, M ;
SINSKEY, AJ .
BIOTECHNOLOGY AND BIOENGINEERING, 1986, 28 (04) :549-553
[4]   Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering [J].
Bengtsson, Oskar ;
Jeppsson, Marie ;
Sonderegger, Marco ;
Parachin, Nadia Skorupa ;
Sauer, Uwe ;
Hahn-Hagerdal, Baerbel ;
Gorwa-Grauslund, Mane-F. .
YEAST, 2008, 25 (11) :835-847
[5]   ISC1-encoded inositol phosphosphingolipid phospholipase C is involved in Na+/Li+ halotolerance of Saccharomyces cerevisiae [J].
Betz, C ;
Zajonc, D ;
Moll, M ;
Schweizer, E .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (16) :4033-4039
[6]   D-XYLULOSE FERMENTATION TO ETHANOL BY SACCHAROMYCES-CEREVISIAE [J].
CHIANG, LC ;
GONG, CS ;
CHEN, LF ;
TSAO, GT .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1981, 42 (02) :284-289
[7]   The Genetic Landscape of a Cell [J].
Costanzo, Michael ;
Baryshnikova, Anastasia ;
Bellay, Jeremy ;
Kim, Yungil ;
Spear, Eric D. ;
Sevier, Carolyn S. ;
Ding, Huiming ;
Koh, Judice L. Y. ;
Toufighi, Kiana ;
Mostafavi, Sara ;
Prinz, Jeany ;
Onge, Robert P. St. ;
VanderSluis, Benjamin ;
Makhnevych, Taras ;
Vizeacoumar, Franco J. ;
Alizadeh, Solmaz ;
Bahr, Sondra ;
Brost, Renee L. ;
Chen, Yiqun ;
Cokol, Murat ;
Deshpande, Raamesh ;
Li, Zhijian ;
Lin, Zhen-Yuan ;
Liang, Wendy ;
Marback, Michaela ;
Paw, Jadine ;
Luis, Bryan-Joseph San ;
Shuteriqi, Ermira ;
Tong, Amy Hin Yan ;
van Dyk, Nydia ;
Wallace, Iain M. ;
Whitney, Joseph A. ;
Weirauch, Matthew T. ;
Zhong, Guoqing ;
Zhu, Hongwei ;
Houry, Walid A. ;
Brudno, Michael ;
Ragibizadeh, Sasan ;
Papp, Balazs ;
Pal, Csaba ;
Roth, Frederick P. ;
Giaever, Guri ;
Nislow, Corey ;
Troyanskaya, Olga G. ;
Bussey, Howard ;
Bader, Gary D. ;
Gingras, Anne-Claude ;
Morris, Quaid D. ;
Kim, Philip M. ;
Kaiser, Chris A. .
SCIENCE, 2010, 327 (5964) :425-431
[8]   A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis [J].
Dragon, F ;
Gallagher, JEG ;
Compagnone-Post, PA ;
Mitchell, BM ;
Porwancher, KA ;
Wehner, KA ;
Wormsley, S ;
Settlage, RE ;
Shabanowitz, J ;
Osheim, Y ;
Beyer, AL ;
Hunt, DF ;
Baserga, SJ .
NATURE, 2002, 417 (6892) :967-970
[9]  
EBERTS TJ, 1979, CLIN CHEM, V25, P1440
[10]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386