Significance Analysis of Prognostic Signatures

被引:23
作者
Beck, Andrew H. [1 ,2 ]
Knoblauch, Nicholas W. [1 ,2 ]
Hefti, Marco M. [1 ,2 ]
Kaplan, Jennifer [1 ,2 ]
Schnitt, Stuart J. [1 ,2 ]
Culhane, Aedin C. [3 ,4 ]
Schroeder, Markus S. [3 ,4 ]
Risch, Thomas [3 ,4 ]
Quackenbush, John [3 ,4 ]
Haibe-Kains, Benjamin [5 ]
机构
[1] Beth Israel Deaconess Med Ctr, Dept Pathol, Boston, MA 02215 USA
[2] Harvard Univ, Sch Med, Boston, MA USA
[3] Dana Farber Canc Inst, Boston, MA 02115 USA
[4] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA
[5] IRCM, Bioinformat & Computat Genom Lab, Montreal, PQ, Canada
关键词
GENE-EXPRESSION; BREAST-CANCER; MOLECULAR SUBTYPES; HISTOLOGIC GRADE; CHEMOTHERAPY; METAANALYSIS; REVEALS; HYPOXIA;
D O I
10.1371/journal.pcbi.1002875
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A major goal in translational cancer research is to identify biological signatures driving cancer progression and metastasis. A common technique applied in genomics research is to cluster patients using gene expression data from a candidate prognostic gene set, and if the resulting clusters show statistically significant outcome stratification, to associate the gene set with prognosis, suggesting its biological and clinical importance. Recent work has questioned the validity of this approach by showing in several breast cancer data sets that "random'' gene sets tend to cluster patients into prognostically variable subgroups. This work suggests that new rigorous statistical methods are needed to identify biologically informative prognostic gene sets. To address this problem, we developed Significance Analysis of Prognostic Signatures (SAPS) which integrates standard prognostic tests with a new prognostic significance test based on stratifying patients into prognostic subtypes with random gene sets. SAPS ensures that a significant gene set is not only able to stratify patients into prognostically variable groups, but is also enriched for genes showing strong univariate associations with patient prognosis, and performs significantly better than random gene sets. We use SAPS to perform a large meta-analysis (the largest completed to date) of prognostic pathways in breast and ovarian cancer and their molecular subtypes. Our analyses show that only a small subset of the gene sets found statistically significant using standard measures achieve significance by SAPS. We identify new prognostic signatures in breast and ovarian cancer and their corresponding molecular subtypes, and we show that prognostic signatures in ER negative breast cancer are more similar to prognostic signatures in ovarian cancer than to prognostic signatures in ER positive breast cancer. SAPS is a powerful new method for deriving robust prognostic biological signatures from clinically annotated genomic datasets.
引用
收藏
页数:17
相关论文
共 30 条
[1]   IDconverter and IDClight:: Conversion and annotation of gene and protein IDs [J].
Alibes, Andreu ;
Yankilevich, Patricio ;
Canada, Andres ;
Diaz-Uriarte, Ramon .
BMC BIOINFORMATICS, 2007, 8
[2]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[3]   Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype of Serous Ovarian Cancer [J].
Bentink, Stefan ;
Haibe-Kains, Benjamin ;
Risch, Thomas ;
Fan, Jian-Bing ;
Hirsch, Michelle S. ;
Holton, Kristina ;
Rubio, Renee ;
April, Craig ;
Chen, Jing ;
Wickham-Garcia, Eliza ;
Liu, Joyce ;
Culhane, Aedin ;
Drapkin, Ronny ;
Quackenbush, John ;
Matulonis, Ursula A. .
PLOS ONE, 2012, 7 (02)
[4]   Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene [J].
Buffa, F. M. ;
Harris, A. L. ;
West, C. M. ;
Miller, C. J. .
BRITISH JOURNAL OF CANCER, 2010, 102 (02) :428-435
[5]   Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer [J].
Cheang, Maggie C. U. ;
Chia, Stephen K. ;
Voduc, David ;
Gao, Dongxia ;
Leung, Samuel ;
Snider, Jacqueline ;
Watson, Mark ;
Davies, Sherri ;
Bernard, Philip S. ;
Parker, Joel S. ;
Perou, Charles M. ;
Ellis, Matthew J. ;
Nielsen, Torsten O. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (10) :736-750
[6]   Gene expression programs in response to hypoxia: Cell type specificity and prognostic significance in human cancers [J].
Chi, JT ;
Wang, Z ;
Nuyten, DSA ;
Rodriguez, EH ;
Schaner, ME ;
Salim, A ;
Wang, Y ;
Kristensen, GB ;
Helland, A ;
Borresen-Dale, AL ;
Giaccia, A ;
Longaker, MT ;
Hastie, T ;
Yang, GP ;
van de Vijver, MJ ;
Brown, PO .
PLOS MEDICINE, 2006, 3 (03) :395-409
[7]   Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes [J].
Desmedt, Christine ;
Haibe-Kains, Benjamin ;
Wirapati, Pratyaksha ;
Buyse, Marc ;
Larsimont, Denis ;
Bontempi, Gianluca ;
Delorenzi, Mauro ;
Piccart, Martine ;
Sotiriou, Christos .
CLINICAL CANCER RESEARCH, 2008, 14 (16) :5158-5165
[8]  
Haibe-Kains B., 2011, genefu: Relevant functions for gene expression analysis, especially in breast cancer
[9]   A Three-Gene Model to Robustly Identify Breast Cancer Molecular Subtypes [J].
Haibe-Kains, Benjamin ;
Desmedt, Christine ;
Loi, Sherene ;
Culhane, Aedin C. ;
Bontempi, Gianluca ;
Quackenbush, John ;
Sotiriou, Christos .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2012, 104 (04) :311-325
[10]   Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer [J].
Ivshina, Anna V. ;
George, Joshy ;
Senko, Oleg ;
Mow, Benjamin ;
Putti, Thomas C. ;
Smeds, Johanna ;
Lindahl, Thomas ;
Pawitan, Yudi ;
Hall, Per ;
Nordgren, Hans ;
Wong, John E. L. ;
Liu, Edison T. ;
Bergh, Jonas ;
Kuznetsov, Vladimir A. ;
Miller, Lance D. .
CANCER RESEARCH, 2006, 66 (21) :10292-10301