Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory

被引:43
作者
Cawse-Nicholson, Kerry [1 ,2 ]
Damelin, Steven B. [3 ]
Robin, Amandine [1 ]
Sears, Michael [4 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2000 Johannesburg, South Africa
[2] CSIR, Meraka Inst, Remote Sensing Res Unit, ZA-0001 Pretoria, South Africa
[3] Wayne Cty Day Sch, Dept Math, Goldsboro, NC 27530 USA
[4] Univ Witwatersrand, Sch Comp Sci, ZA-2000 Johannesburg, South Africa
关键词
Hyperspectral; intrinsic dimension; linear mixture model; random matrix theory; unmixing; COVARIANCE MATRICES; SIGNAL SOURCES; NUMBER; EIGENVALUES;
D O I
10.1109/TIP.2012.2227765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Determining the intrinsic dimension of a hyperspectral image is an important step in the spectral unmixing process and under- or overestimation of this number may lead to incorrect unmixing in unsupervised methods. In this paper, we discuss a new method for determining the intrinsic dimension using recent advances in random matrix theory. This method is entirely unsupervised, free from any user-determined parameters and allows spectrally correlated noise in the data. Robustness tests are run on synthetic data, to determine how the results were affected by noise levels, noise variability, noise approximation, and spectral characteristics of the endmembers. Success rates are determined for many different synthetic images, and the method is tested on two pairs of real images, namely a Cuprite scene taken from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and SpecTIR sensors, and a Lunar Lakes scene taken from AVIRIS and Hyperion, with good results.
引用
收藏
页码:1301 / 1310
页数:10
相关论文
共 30 条
[1]   A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components [J].
Acito, N. ;
Diani, M. ;
Corsini, G. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11) :3844-3856
[2]   Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components [J].
Acito, Nicola ;
Diani, Marco ;
Corsini, Giovanni .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (04) :1940-1954
[3]  
[Anonymous], P IEEE GRSS WHISPERS
[4]  
[Anonymous], 2008, P SPIE
[5]  
[Anonymous], P 11 JPL AIRB GEOSC
[6]  
[Anonymous], P IEEE GRSS WHISPERS
[7]   Eigenvalues of large sample covariance matrices of spiked population models [J].
Baik, Jinho ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) :1382-1408
[8]  
Bajorski P., 2009, Proceedings of SPIE Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, VXV, P1
[9]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[10]  
Cawse K., 2010, Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2010 2nd Workshop on, P1