Hierarchical Chemical Bonds Contributing to the Intrinsically Low Thermal Conductivity in α-MgAgSb Thermoelectric Materials

被引:233
作者
Ying, Pingjun [1 ]
Li, Xin [2 ]
Wang, Yancheng [3 ]
Yang, Jiong [2 ]
Fu, Chenguang [1 ]
Zhang, Wenqing [2 ]
Zhao, Xinbing [1 ]
Zhu, Tiejun [1 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
关键词
JUZA NAZNX X; HIGH FIGURE; PERFORMANCE; MERIT; ELECTRON; SB;
D O I
10.1002/adfm.201604145
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding the lattice dynamics and phonon transport from the perspective of chemical bonds is essential for improving and finding high-efficiency thermoelectric materials and for many applications. Here, the coexistence of global and local weak chemical bonds is elucidated as the origin of the intrinsically low lattice thermal conductivity of non-caged structure Nowotny-Juza compound, alpha-MgAgSb, which is identified as a new type of promising thermoelectric material in the temperature range of 300-550 K. The global weak bonds of the compound lead to a low sound velocity. The unique three-centered Mg-Ag-Sb bonds in alpha-MgAgSb vibrate locally and induce low-frequency optical phonons, resulting in "rattling-like" thermal damping to further reduce the lattice thermal conductivity. The hierarchical chemical bonds originate from the low valence electron count of alpha-MgAgSb, with the feature shared by Nowotny-Juza compounds. Low lattice thermal conductivities are therefore highly possible in this series of compounds, which is verified by phonon and bulk modulus calculations on some of the compositions.
引用
收藏
页数:8
相关论文
共 59 条
[1]  
[Anonymous], 2016, IN CRYST STRUCT DAT
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Magnetic phase diagram of Eu4Ga8Ge16 by magnetic susceptibility, heat capacity, and Mossbauer measurements -: art. no. 174429 [J].
Bryan, JD ;
Trill, H ;
Birkedal, H ;
Christensen, M ;
Srdanov, VI ;
Eckert, H ;
Iversen, BB ;
Stucky, GD .
PHYSICAL REVIEW B, 2003, 68 (17)
[5]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[6]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[7]   Thermal expansion coefficients of Bi2Se3 and Sb2Te3 crystals from 10 K to 270 K [J].
Chen, X. ;
Zhou, H. D. ;
Kiswandhi, A. ;
Miotkowski, I. ;
Chen, Y. P. ;
Sharma, P. A. ;
Sharma, A. L. Lima ;
Hekmaty, M. A. ;
Smirnov, D. ;
Jiang, Z. .
APPLIED PHYSICS LETTERS, 2011, 99 (26)
[8]   Glasslike heat conduction in high-mobility crystalline semiconductors [J].
Cohn, JL ;
Nolas, GS ;
Fessatidis, V ;
Metcalf, TH ;
Slack, GA .
PHYSICAL REVIEW LETTERS, 1999, 82 (04) :779-782
[9]  
Deng-Feng Li, 2015, Mathematical and Computational Applications, V20, P25
[10]   Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials [J].
Fu, Chenguang ;
Bai, Shengqiang ;
Liu, Yintu ;
Tang, Yunshan ;
Chen, Lidong ;
Zhao, Xinbing ;
Zhu, Tiejun .
NATURE COMMUNICATIONS, 2015, 6