A need for NAD plus in muscle development, homeostasis, and aging

被引:50
作者
Goody, Michelle F. [1 ]
Henry, Clarissa A. [1 ,2 ]
机构
[1] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA
[2] Univ Maine, Grad Sch Biomed Sci & Engn, Orono, ME 04469 USA
来源
SKELETAL MUSCLE | 2018年 / 8卷
关键词
REGULATES CELL-ADHESION; DYSTROPHIC MDX MOUSE; SKELETAL-MUSCLE; LIFE-SPAN; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; INTEGRIN ALPHA-7; ADP-RIBOSYLATION; REDOX STATE; MITOCHONDRIAL; PROTEIN;
D O I
10.1186/s13395-018-0154-1
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Skeletal muscle enables posture, breathing, and locomotion. Skeletal muscle also impacts systemic processes such as metabolism, thermoregulation, and immunity. Skeletal muscle is energetically expensive and is a major consumer of glucose and fatty acids. Metabolism of fatty acids and glucose requires NAD+ function as a hydrogen/electron transfer molecule. Therefore, NAD+ plays a vital role in energy production. In addition, NAD+ also functions as a cosubstrate for post-translational modifications such as deacetylation and ADP-ribosylation. Therefore, NAD+ levels influence a myriad of cellular processes including mitochondrial biogenesis, transcription, and organization of the extracellular matrix. Clearly, NAD+ is a major player in skeletal muscle development, regeneration, aging, and disease. The vast majority of studies indicate that lower NAD+ levels are deleterious for muscle health and higher NAD+ levels augment muscle health. However, the downstream mechanisms of NAD+ function throughout different cellular compartments are not well understood. The purpose of this review is to highlight recent studies investigating NAD+ function in muscle development, homeostasis, disease, and regeneration. Emerging research areas include elucidating roles for NAD+ in muscle lysosome function and calcium mobilization, mechanisms controlling fluctuations in NAD+ levels during muscle development and regeneration, and interactions between targets of NAD+ signaling (especially mitochondria and the extracellular matrix). This knowledge should facilitate identification of more precise pharmacological and activity-based interventions to raise NAD+ levels in skeletal muscle, thereby promoting human health and function in normal and disease states.
引用
收藏
页数:14
相关论文
共 83 条
[61]   NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation [J].
Ryu, Dongryeol ;
Zhang, Hongbo ;
Ropelle, Eduardo R. ;
Sorrentino, Vincenzo ;
Mazala, Davi A. G. ;
Mouchiroud, Laurent ;
Marshall, Philip L. ;
Campbell, Matthew D. ;
Ali, Amir Safi ;
Knowels, Gary M. ;
Bellemin, Stephanie ;
Iyer, Shama R. ;
Wang, Xu ;
Gariani, Karim ;
Sauve, Anthony A. ;
Canto, Carles ;
Conley, Kevin E. ;
Walter, Ludivine ;
Lovering, Richard M. ;
Chin, Eva R. ;
Jasmin, Bernard J. ;
Marcinek, David J. ;
Menzies, Keir J. ;
Auwerx, Johan .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (361)
[62]   Nicotinamide phosphorybosiltransferase overexpression in thyroid malignancies and its correlation with tumor stage and with survivin/survivin DEx3 expression [J].
Sawicka-Gutaj, Nadia ;
Waligorska-Stachura, Joanna ;
Andrusiewicz, Mirosaw ;
Biczysko, Maciej ;
Sowinski, Jerzy ;
Skrobisz, Jerzy ;
Ruchala, Marek .
TUMOR BIOLOGY, 2015, 36 (10) :7859-7863
[63]   NAD(P)H:quinone oxidoreductase 1:: Role as a superoxide scavenger [J].
Siegel, D ;
Gustafson, DL ;
Dehn, DL ;
Han, JY ;
Boonchoong, P ;
Berliner, LJ ;
Ross, D .
MOLECULAR PHARMACOLOGY, 2004, 65 (05) :1238-1247
[64]   Time-Lapse Analysis and Mathematical Characterization Elucidate Novel Mechanisms Underlying Muscle Morphogenesis [J].
Snow, Chelsi J. ;
Goody, Michelle ;
Kelly, Meghan W. ;
Oster, Emma C. ;
Jones, Robert ;
Khalil, Andre ;
Henry, Clarissa A. .
PLOS GENETICS, 2008, 4 (10)
[65]   Evidence for a Direct Effect of the NAD+ Precursor Acipimox on Muscle Mitochondrial Function in Humans [J].
van de Weijer, Tineke ;
Phielix, Esther ;
Bilet, Lena ;
Williams, Evan G. ;
Ropelle, Eduardo R. ;
Bierwagen, Alessandra ;
Livingstone, Roshan ;
Nowotny, Peter ;
Sparks, Lauren M. ;
Paglialunga, Sabina ;
Szendroedi, Julia ;
Havekes, Bas ;
Moullan, Norman ;
Pirinen, Eija ;
Hwang, Jong-Hee ;
Schrauwen-Hinderling, Vera B. ;
Hesselink, Matthijs K. C. ;
Auwerx, Johan ;
Roden, Michael ;
Schrauwen, Patrick .
DIABETES, 2015, 64 (04) :1193-1201
[66]  
Vora M, 2016, ANTICANCER RES, V36, P503
[67]   Muscle type-specific responses to NAD+ salvage biosynthesis promote muscle function in Caenorhabditis elegans [J].
Vrablik, Tracy L. ;
Wang, Wenqing ;
Upadhyay, Awani ;
Hanna-Rose, Wendy .
DEVELOPMENTAL BIOLOGY, 2011, 349 (02) :387-394
[68]   NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response [J].
Wang, B. ;
Hasan, M. K. ;
Alvarado, E. ;
Yuan, H. ;
Wu, H. ;
Chen, W. Y. .
ONCOGENE, 2011, 30 (08) :907-921
[69]   Superoxide flashes in single mitochondria [J].
Wang, Wang ;
Fang, Huaqiang ;
Groom, Linda ;
Cheng, Aiwu ;
Zhang, Wanrui ;
Liu, Jie ;
Wang, Xianhua ;
Li, Kaitao ;
Han, Peidong ;
Zheng, Ming ;
Yin, Jinhu ;
Wang, Weidong ;
Mattson, Mark P. ;
Kao, Joseph P. Y. ;
Lakatta, Edward G. ;
Sheu, Shey-Shing ;
Ouyang, Kunfu ;
Chen, Ju ;
Dirksen, Robert T. ;
Cheng, Heping .
CELL, 2008, 134 (02) :279-290
[70]   Sirtuins, epigenetics and longevity [J].
Watroba, Mateusz ;
Dudek, Ilona ;
Skoda, Marta ;
Stangret, Aleksandra ;
Rzodkiewicz, Przemyslaw ;
Szukiewicz, Dariusz .
AGEING RESEARCH REVIEWS, 2017, 40 :11-19