LOCAL BIFURCATIONS OF A QUASIPERIODIC ORBIT

被引:8
作者
Banerjee, Soumitro [1 ,4 ]
Giaouris, Damian [2 ]
Missailidis, Petros [3 ]
Imrayed, Otman [3 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Nadia 741252, WB, India
[2] Ctr Res & Technol Hellas CERTH, CPERI, Thermi 57001, Greece
[3] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 12期
关键词
Quasiperiodicity; bifurcation; torus; CONTROLLED DC/DC CONVERTERS; FAST-SCALE; DOUBLING BIFURCATIONS; VIBRATORY-SYSTEMS; TORUS; CONTINUATION; COMPUTATION; INSTABILITY; ATTRACTORS; CASCADE;
D O I
10.1142/S0218127412502896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the local bifurcations that can occur in a quasiperiodic orbit in a three-dimensional map: (a) a torus doubling resulting in two disjoint loops, (b) a torus doubling resulting in a single closed curve with two loops, (c) the appearance of a third frequency, and (d) the birth of a stable torus and an unstable torus. We analyze these bifurcations in terms of the stability of the point at which the closed invariant curve intersects a "second Poincare section". We show that these bifurcations can be classified depending on where the eigenvalues of this fixed point cross the unit circle.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Local Bifurcations of the Enzyme-Catalyzed Reaction Comprising a Branched Network
    Zhang, Qiuyan
    Liu, Lingling
    Zhang, Weinian
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [32] Local Bifurcations of Invariant Manifolds of the Cahn-Hilliard-Oono Equation
    Kulikov, A. N.
    Kulikov, D. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 1003 - 1017
  • [33] Multiple bifurcations in wrinkling analysis of thin films on compliant substrates
    Xu, Fan
    Potier-Ferry, Michel
    Belouettar, Salim
    Hu, Heng
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 76 : 203 - 222
  • [34] Quasiperiodic music
    Ong, Darren C.
    JOURNAL OF MATHEMATICS AND THE ARTS, 2020, 14 (04) : 285 - 296
  • [35] OPERATOR METHODS FOR CALCULATING LYAPUNOV VALUES IN PROBLEMS ON LOCAL BIFURCATIONS OF DYNAMICAL SYSTEMS
    Gusarova, N., I
    Murtazina, S. A.
    Fazlytdinov, M. F.
    Yumagulov, M. G.
    UFA MATHEMATICAL JOURNAL, 2018, 10 (01): : 25 - 48
  • [36] Unusual commensurability effects in quasiperiodic pinning arrays induced by local inhomogeneities of the pinning site density
    Bothner, D.
    Seidl, R.
    Misko, V. R.
    Kleiner, R.
    Koelle, D.
    Kemmler, M.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2014, 27 (06)
  • [37] On bifurcations and local stability in 1-D nonlinear discrete dynamical systems
    Luo, Albert C. J.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (01) : 1 - 29
  • [38] On bifurcations and local stability in 1-D nonlinear discrete dynamical systems
    Albert C. J. Luo
    International Journal of Dynamics and Control, 2021, 9 : 1 - 29
  • [39] Endogenous driving and synchronization in cardiac and uterine virtual tissues: bifurcations and local coupling
    Benson, AP
    Clayton, RH
    Holden, AV
    Kharche, S
    Tong, WC
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1842): : 1313 - 1327
  • [40] Invariant manifolds and global bifurcations
    Guckenheimer, John
    Krauskopf, Bernd
    Osinga, Hinke M.
    Sandstede, Bjoern
    CHAOS, 2015, 25 (09)