LOCAL BIFURCATIONS OF A QUASIPERIODIC ORBIT

被引:8
|
作者
Banerjee, Soumitro [1 ,4 ]
Giaouris, Damian [2 ]
Missailidis, Petros [3 ]
Imrayed, Otman [3 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Nadia 741252, WB, India
[2] Ctr Res & Technol Hellas CERTH, CPERI, Thermi 57001, Greece
[3] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 12期
关键词
Quasiperiodicity; bifurcation; torus; CONTROLLED DC/DC CONVERTERS; FAST-SCALE; DOUBLING BIFURCATIONS; VIBRATORY-SYSTEMS; TORUS; CONTINUATION; COMPUTATION; INSTABILITY; ATTRACTORS; CASCADE;
D O I
10.1142/S0218127412502896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the local bifurcations that can occur in a quasiperiodic orbit in a three-dimensional map: (a) a torus doubling resulting in two disjoint loops, (b) a torus doubling resulting in a single closed curve with two loops, (c) the appearance of a third frequency, and (d) the birth of a stable torus and an unstable torus. We analyze these bifurcations in terms of the stability of the point at which the closed invariant curve intersects a "second Poincare section". We show that these bifurcations can be classified depending on where the eigenvalues of this fixed point cross the unit circle.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multiple bifurcations and local energy minimizers in thermoelastic martensitic transformations
    Xuan, Chen
    Ding, Shurong
    Huo, Yongzhong
    ACTA MECHANICA SINICA, 2015, 31 (05) : 660 - 671
  • [22] Bifurcations in a forced Wilson-Cowan neuron pair
    Yoshikawa, Masaki
    Ono, Kentaro
    Ueta, Tetsushi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2023, 14 (02): : 366 - 377
  • [23] Codimension 3 non-resonant bifurcations of rough heteroclinic loops with one orbit flip
    Shuliang Shui
    Deming Zhu
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2006, 27 (06) : 657 - 674
  • [24] Bifurcations in the Generalized Korteweg-de Vries Equation
    Kashchenko, S. A.
    Preobrazhenskaya, M. M.
    RUSSIAN MATHEMATICS, 2018, 62 (02) : 49 - 61
  • [25] Dynamics of coupled generators of quasiperiodic oscillations: Different types of synchronization and other phenomena
    Kuznetsov, A. P.
    Kuznetsov, S. P.
    Shchegoleva, N. A.
    Stankevich, N. V.
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 398 : 1 - 12
  • [26] Codimension 3 Non-resonant Bifurcations of Rough Heteroclinic Loops with One Orbit Flip*
    Shuliang Shui
    Deming Zhu
    Chinese Annals of Mathematics, Series B, 2006, 27 : 657 - 674
  • [27] Codimension 3 Non-resonant Bifurcations of Rough Heteroclinic Loops with One Orbit Flip
    Shuliang SHUI Deming ZHU College of Mathematics
    College of Sciences
    ChineseAnnalsofMathematics(SeriesB), 2006, (06) : 657 - 674
  • [28] Quasiperiodic forcing of coupled chaotic systems
    Agrawal, Manish
    Prasad, Awadhesh
    Ramaswamy, Ram
    PHYSICAL REVIEW E, 2010, 81 (02)
  • [29] Local bifurcations of critical periods for cubic Lienard equations with cubic damping
    Zou, Lan
    Chen, Xingwu
    Zhang, Weinian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) : 404 - 410
  • [30] BIFURCATIONS OF WAVEFRONTS ON r-CORNERS: SEMI-LOCAL CLASSIFICATION
    Tsukada, Takaharu
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (03) : 303 - 334