LOCAL BIFURCATIONS OF A QUASIPERIODIC ORBIT

被引:8
|
作者
Banerjee, Soumitro [1 ,4 ]
Giaouris, Damian [2 ]
Missailidis, Petros [3 ]
Imrayed, Otman [3 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Nadia 741252, WB, India
[2] Ctr Res & Technol Hellas CERTH, CPERI, Thermi 57001, Greece
[3] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 12期
关键词
Quasiperiodicity; bifurcation; torus; CONTROLLED DC/DC CONVERTERS; FAST-SCALE; DOUBLING BIFURCATIONS; VIBRATORY-SYSTEMS; TORUS; CONTINUATION; COMPUTATION; INSTABILITY; ATTRACTORS; CASCADE;
D O I
10.1142/S0218127412502896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the local bifurcations that can occur in a quasiperiodic orbit in a three-dimensional map: (a) a torus doubling resulting in two disjoint loops, (b) a torus doubling resulting in a single closed curve with two loops, (c) the appearance of a third frequency, and (d) the birth of a stable torus and an unstable torus. We analyze these bifurcations in terms of the stability of the point at which the closed invariant curve intersects a "second Poincare section". We show that these bifurcations can be classified depending on where the eigenvalues of this fixed point cross the unit circle.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quasiperiodic perturbations of Stokes waves: Secondary bifurcations and stability
    Dyachenko, Sergey A.
    Semenova, Anastassiya
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 492
  • [2] DEGENERATE BIFURCATIONS OF HETERODIMENSIONAL CYCLES WITH ORBIT FLIP
    Liu, Xingbo
    Liu, Junying
    Zhu, Deming
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05):
  • [3] Periodic Orbit Bifurcations in Planar Hysteretic Systems without Equilibria
    Esteban, Marina
    Ponce, Enrique
    Torres, Francisco
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (07):
  • [4] Symmetry restoring bifurcations and quasiperiodic chaos induced by a new intermittency in a vibro-impact system
    Yue, Yuan
    Miao, Pengcheng
    Xie, Jianhua
    Celso, Grebogi
    CHAOS, 2016, 26 (11)
  • [5] A simple autonomous quasiperiodic self-oscillator
    Kuznetsov, A. P.
    Kuznetsov, S. P.
    Stankevich, N. V.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) : 1676 - 1681
  • [6] Local bifurcations in delayed chaos anticontrol systems
    Lu, HT
    Yu, XZ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (01) : 188 - 199
  • [7] Codimension 3 bifurcations of homoclinic orbits with orbit flips and inclination flips
    Shui, SL
    Zhu, DM
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (04) : 555 - 566
  • [8] Hypermeander of spirals: local bifurcations and statistical properties
    Ashwin, P
    Melbourne, I
    Nicol, M
    PHYSICA D, 2001, 156 (3-4): : 364 - 382
  • [9] TRANSFORMATION OF LOCAL BIFURCATIONS UNDER COLLOCATION METHODS
    Foster, Andrew
    Khumalo, Melusi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1101 - 1123
  • [10] Local and global bifurcations in an SIRS epidemic model
    Song, Zigen
    Xu, Jian
    Li, Qunhong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (02) : 534 - 547