On the low regularity of the fifth order Kadomtsev-Petviashvili I equation

被引:10
作者
Chen, Wengu [1 ]
Li, Junfeng [2 ]
Miao, Changxing [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Beijing Normal Univ, Minist Educ, Lab Math & Complex Syst, Sch Math Sci, Beijing 100875, Peoples R China
关键词
The fifth order KP-I equation; Bourgain space; Dyadic decomposed Strichartz estimate; Dispersive smoothing effect; Maximal estimate;
D O I
10.1016/j.jde.2008.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the fifth order Kadomtsev-Petviashvili I (KP-I) equation as partial derivative(t)u + alpha partial derivative(3)(x)u + partial derivative(5)(x)u + partial derivative(-1)(x) partial derivative(2)(y)u + uu(x) = 0, while alpha is an element of R. We introduce an interpolated energy space E-s to consider the well-posedness of the initial value problem (IVP) of the fifth order KP-I equation. We obtain the local well-posedness of IVP of the fifth order KP-I equation in E-s for 0 < s <= 1. To obtain the local well-posedness, we present a bilinear estimate in the Bourgain space in the framework of the interpolated energy space. It crucially depends on the dyadic decomposed Strichartz estimate, the fifth order dispersive smoothing effect and maximal estimate. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3433 / 3469
页数:37
相关论文
共 25 条
[1]  
Ben-Artzi M., 1999, DIFFERENTIAL INTEGRA, V12, P137
[2]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P315
[3]  
Chen WG, 2007, DIFFER INTEGRAL EQU, V20, P1285
[4]   On the low regularity of the modified Korteweg-de Vries equation with a dissipative term [J].
Chen, Wengu ;
Li, Junfeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 240 (01) :125-144
[5]   ON SOLUTIONS FOR THE KADOMTSEV-PETVIASHVILI I EQUATION [J].
Colliander, J. ;
Kenig, C. ;
Staffilani, G. .
MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (04) :491-520
[6]  
COLLIANDER J, 2007, ARXIV07060455V1MATHA
[7]   Globalizing estimates for the periodic KPI equation [J].
Colliander, JE .
ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (04) :692-698
[8]   On the Cauchy problem for the Zakharov system [J].
Ginibre, J ;
Tsutsumi, Y ;
Velo, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 151 (02) :384-436
[9]  
HADAC M, 2008, T AM MATH S IN PRESS
[10]  
Ionescu AD, 2007, ANN MATH STUD, V163, P181