Identification of the Interface in a Binary Complex Plasma Using Machine Learning

被引:12
作者
Huang, He [1 ]
Schwabe, Mierk [2 ]
Du, Cheng-Ran [1 ,3 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[2] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-82234 Wessling, Germany
[3] Minist Educ, Magnet Confinement Fus Res Ctr, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
complex plasma; machine learning; FACE RECOGNITION; NEURAL-NETWORKS; CLASSIFICATION; STATE;
D O I
10.3390/jimaging5030036
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
A binary complex plasma consists of two different types of dust particles in an ionized gas. Due to the spinodal decomposition and force imbalance, particles of different masses and diameters are typically phase separated, resulting in an interface. Both external excitation and internal instability may cause the interface to move with time. Support vector machine (SVM) is a supervised machine learning method that can be very effective for multi-class classification. We applied an SVM classification method based on image brightness to locate the interface in a binary complex plasma. Taking the scaled mean and variance as features, three areas, namely small particles, big particles and plasma without dust particles, were distinguished, leading to the identification of the interface between small and big particles.
引用
收藏
页数:7
相关论文
共 38 条
[1]  
[Anonymous], ARXIV18040665
[2]  
Buitinck Lars, 2013, ECML PKDD WORKSH LAN, P108, DOI DOI 10.48550/ARXIV.1309.0238
[3]  
Chaudhuri M, 2010, AIP CONF PROC, V1308, P207, DOI 10.1063/1.3526159
[4]  
Cheng J, 2001, LECT NOTES COMPUTER, P141, DOI DOI 10.1007/3-540-45153-6_14
[5]   DIRECT OBSERVATION OF COULOMB CRYSTALS AND LIQUIDS IN STRONGLY COUPLED RF DUSTY PLASMAS [J].
CHU, JH ;
I, L .
PHYSICAL REVIEW LETTERS, 1994, 72 (25) :4009-4012
[6]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[7]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[8]   Training invariant support vector machines [J].
Decoste, D ;
Schölkopf, B .
MACHINE LEARNING, 2002, 46 (1-3) :161-190
[9]  
Du C.R., 2016, ARXIV160901456
[10]   Complex (dusty) plasmas: Current status, open issues, perspectives [J].
Fortov, VE ;
Ivlev, AV ;
Khrapak, SA ;
Khrapak, AG ;
Morfill, GE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 421 (1-2) :1-103