共 1 条
Exploration Potential of Fine-Fraction Heavy Mineral Concentrates from Till Using Automated Mineralogy: A Case Study from the Izok Lake Cu-Zn-Pb-Ag VMS Deposit, Nunavut, Canada
被引:18
|作者:
Lougheed, H. Donald
[1
]
McClenaghan, M. Beth
[2
]
Layton-Matthews, Dan
[1
]
Leybourne, Matthew
[1
,3
]
机构:
[1] Queens Univ, Queens Facil Isotope Res, Dept Geol Sci & Geol Engn, 36 Union St, Kingston, ON K7L 3N6, Canada
[2] Geol Survey Canada, 601 Booth St, Ottawa, ON K1A 0E8, Canada
[3] Queens Univ, McDonald Inst, Canadian Particle Astrophys Res Ctr, Dept Phys Engn Phys & Astron, 64 Bader Lane, Kingston, ON K7L 3N6, Canada
来源:
关键词:
indicator minerals;
heavy mineral concentrates;
automated mineralogy;
till sampling;
VMS;
MLA;
Izok Lake;
MASSIVE SULFIDE DEPOSITS;
BASE-METAL DEPOSIT;
INDICATOR MINERALS;
BRITISH-COLUMBIA;
SEDIMENTS;
GOLD;
SIGNATURES;
EMPHASIS;
RECOVERY;
GAHNITE;
D O I:
10.3390/min10040310
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
Exploration under thick glacial sediment cover is an important facet of modern mineral exploration in Canada and northern Europe. Till heavy mineral concentrate (HMC) indicator mineral methods are well established in exploration for diamonds, gold, and base metals in glaciated terrain. Traditional methods rely on visual examination of >250 mu m HMC material, however this study applies modern automated mineralogical methods (mineral liberation analysis (MLA)) to investigate the finer (<250 mu m) fraction of till HMC. Automated mineralogy of finer material allows for rapid collection of precise compositional and morphological data from a large number (10,000-100,000) of heavy mineral grains in a single sample. The Izok Lake volcanogenic massive sulfide (VMS) deposit, one of the largest undeveloped Zn-Cu resources in North America, has a well-documented fan-shaped indicator mineral dispersal train and was used as a test site for this study. Axinite, a VMS indicator mineral difficult to identify optically in HMC, is identified in till samples up to 8 km down ice. Epidote and Fe-oxide minerals are identified, with concentrations peaking proximal to mineralization. Corundum and gahnite are intergrown in till samples immediately down ice of mineralization. Till samples also contain chalcopyrite and galena up to 8 km down ice of mineralization, an increase from 1.3 km for sulfide minerals in till previously reported for coarse HMC fractions. Some of these sulfide grains occur as inclusions within chemically and physically robust mineral grains and would not be identified visually in the coarse HMC visual counts. Best practices for epoxy mineral grain mounting and abundance reporting are presented along with the automated mineralogy of till samples down ice of the deposit.
引用
收藏
页数:33
相关论文