Waterproof Active Paper via Laser Surface Micropatterning of Magnetic Nanoparticles

被引:24
作者
Chitnis, G. [1 ,3 ]
Ziaie, B. [2 ,3 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
laser ablation; magnetic; actuators; patterning; ferrofluid; MICROFLUIDIC DEVICES; ELECTRONICS; PLATFORM;
D O I
10.1021/am3011065
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Paper is one of the oldest and most abundant materials known to man. Recently, there has been a considerable interest in creating paper devices by combining paper with other functional materials. In this letter, we demonstrate a simple fabrication technique to create water-resistant ferro-patterns on wax paper using CO2 laser ablation. A resolution of about 100 mu m is achieved which is mostly limited by the cellulose fiber size (similar to 50 mu m) in the wax paper and can be improved by using a smaller cellulose matrix. Laser ablation results in modification of surface morphology and chemistry, leading to a change in surface energy. We also present a 2D model for ferrofluid deposition relating the size of the pattern to the amount of ferroparticles deposited on the surface. Finally, a paper gripper is presented to demonstrate advantages of our technique, which allows microscale patterning and machining in a single step.
引用
收藏
页码:4435 / 4439
页数:5
相关论文
共 21 条
[1]   Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper [J].
Bruzewicz, Derek A. ;
Reches, Meital ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2008, 80 (09) :3387-3392
[2]   Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics [J].
Carrilho, Emanuel ;
Martinez, Andres W. ;
Whitesides, George M. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :7091-7095
[3]  
Chitnis G, 2011, LAB CHIP, V11, P1161, DOI [10.1039/c0lc00512f, 10.1039/c01c00512f]
[4]   Ferrofluid-Impregnated Paper Actuators [J].
Ding, Zhenwen ;
Wei, Pinghung ;
Chitnis, Girish ;
Ziaie, Babak .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (01) :59-64
[5]   Organic electronics on paper [J].
Eder, F ;
Klauk, H ;
Halik, M ;
Zschieschang, U ;
Schmid, G ;
Dehm, C .
APPLIED PHYSICS LETTERS, 2004, 84 (14) :2673-2675
[6]   Superparamagnetic cellulose fiber networks via nanocomposite functionalization [J].
Fragouli, Despina ;
Bayer, Ilker S. ;
Di Corato, Riccardo ;
Brescia, Rosaria ;
Bertoni, Giovanni ;
Innocenti, Claudia ;
Gatteschi, Dante ;
Pellegrino, Teresa ;
Cingolani, Roberto ;
Athanassiou, Athanassia .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) :1662-1666
[7]   Highly conductive paper for energy-storage devices [J].
Hu, Liangbing ;
Choi, Jang Wook ;
Yang, Yuan ;
Jeong, Sangmoo ;
La Mantia, Fabio ;
Cui, Li-Feng ;
Cui, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (51) :21490-21494
[8]   Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes [J].
Jabbour, Lara ;
Gerbaldi, Claudio ;
Chaussy, Didier ;
Zeno, Elisa ;
Bodoardo, Silvia ;
Beneventi, Davide .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7344-7347
[9]   Electro-active paper actuators [J].
Kim, J ;
Seo, YB .
SMART MATERIALS AND STRUCTURES, 2002, 11 (03) :355-360
[10]   Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva [J].
Klasner, Scott A. ;
Price, Alexander K. ;
Hoeman, Kurt W. ;
Wilson, Rashaun S. ;
Bell, Kayla J. ;
Culbertson, Christopher T. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (05) :1821-1829