On finite-size Lyapunov exponents in multiscale systems

被引:6
作者
Mitchell, Lewis [1 ,2 ]
Gottwald, Georg A. [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
基金
澳大利亚研究理事会;
关键词
LORENZ ATTRACTOR; PREDICTABILITY; MODEL; DYNAMICS; ENSO; SLOW; EXTENSION; REGIMES; NOISE; FLOW;
D O I
10.1063/1.4704805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of regime switches on finite size Lyapunov exponents (FSLEs) in determining the error growth rates and predictability of multiscale systems. We consider a dynamical system involving slow and fast regimes and switches between them. The surprising result is that due to the presence of regimes, the error growth rate can be a non-monotonic function of initial error amplitude. In particular, troughs in the large scales of FSLE spectra are shown to be a signature of slow regimes, whereas fast regimes are shown to cause large peaks in the spectra where error growth rates far exceed those estimated from the maximal Lyapunov exponent. We present analytical results explaining these signatures and corroborate them with numerical simulations. We show further that these peaks disappear in stochastic parametrizations of the fast chaotic processes, and the associated FSLE spectra reveal that large scale predictability properties of the full deterministic model are well approximated, whereas small scale features are not properly resolved. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704805]
引用
收藏
页数:9
相关论文
共 50 条
[1]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[2]   Slow and fast dynamics in coupled systems: A time series analysis view [J].
Boffetta, G ;
Crisanti, A ;
Paparella, F ;
Provenzale, A ;
Vulpiani, A .
PHYSICA D, 1998, 116 (3-4) :301-312
[3]   Predictability: a way to characterize complexity [J].
Boffetta, G ;
Cencini, M ;
Falcioni, M ;
Vulpiani, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 356 (06) :367-474
[4]  
Boffetta G, 1998, J ATMOS SCI, V55, P3409, DOI 10.1175/1520-0469(1998)055<3409:AEOTLA>2.0.CO
[5]  
2
[6]   Linear and nonlinear signatures in the planetary wave dynamics of an AGCM: Phase space tendencies [J].
Branstator, G ;
Berner, J .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2005, 62 (06) :1792-1811
[7]  
Cai M, 2003, J CLIMATE, V16, P40, DOI 10.1175/1520-0442(2003)016<0040:BVOTZC>2.0.CO
[8]  
2
[9]  
Cencini M., 2002, PHYS REV E, V63
[10]  
CHARNEY JG, 1979, J ATMOS SCI, V36, P1205, DOI 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO