Solvent-Free Catalytic Depolymerization of Cellulose to Water-Soluble Oligosaccharides

被引:203
作者
Meine, Niklas [1 ]
Rinaldi, Roberto [1 ]
Schueth, Ferdi [1 ]
机构
[1] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
关键词
biomass; green chemistry; hydrolysis; mass spectrometry; oligosaccharides; CARBON BEARING SO3H; IONIC LIQUIDS; ENZYMATIC-HYDROLYSIS; FERMENTABLE SUGARS; ACID; CONVERSION; BIOMASS; BIOREFINERY; CHEMISTRY; BIOFUELS;
D O I
10.1002/cssc.201100770
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of cellulose is hampered by difficulties with breaking up the biopolymer into soluble products. Herein, we show that the impregnation of cellulosic substrates with catalytic amounts of a strong acid (e.g., H2SO4, HCl) is a highly effective strategy for minimizing the contact problem commonly experienced in mechanically assisted, solid-state reactions. Milling the acid-impregnated cellulose fully converts the substrate into water-soluble oligosaccharides within 2 h. In aqueous solution, soluble products are easily hydrolyzed at 130 degrees C in 1 h, leading to 91?% conversion of the glucan fraction of a-cellulose into glucose, and 96?% of the xylans into xylose. Minor products are glucose dimers (8?%), 5-hydroxymethylfurfural (1?%) and furfural (4?%). Milling practical feedstocks (e.g., wood, sugarcane bagasse, and switchgrass) also results to water-soluble products (oligosaccharides and lignin fragments). The integrated approach (solid-state depolymerization in combination with liquid-phase hydrolysis) could well hold the key to a highly efficient entry process in biorefinery schemes.
引用
收藏
页码:1449 / 1454
页数:6
相关论文
共 44 条
[1]   Production of Biofuels from Cellulose and Corn Stover Using Alkylphenol Solvents [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Bond, Jesse Q. ;
Root, Thatcher W. ;
Dumesic, James A. .
CHEMSUSCHEM, 2011, 4 (08) :1078-1081
[2]  
[Anonymous], FAO AGR SERVICES B
[3]  
[Anonymous], ANGEW CHEM
[4]   Depolymerization of Cellulose Assisted by a Nonthermal Atmospheric Plasma [J].
Benoit, Maud ;
Rodrigues, Anthony ;
Zhang, Qinghua ;
Fourre, Elodie ;
Vigier, Karine De Oliveira ;
Tatibouet, Jean-Michel ;
Jerome, Francois .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (38) :8964-8967
[5]   Fermentable sugars by chemical hydrolysis of biomass [J].
Binder, Joseph B. ;
Raines, Ronald T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4516-4521
[6]   Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
Wang, Dong ;
West, Ryan M. ;
Dumesic, James A. .
SCIENCE, 2010, 327 (5969) :1110-1114
[7]   Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited [J].
Bozell, Joseph J. ;
Petersen, Gene R. .
GREEN CHEMISTRY, 2010, 12 (04) :539-554
[8]  
Chheda J.N., 2007, Angew. Chem, V119, P7298
[9]   Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J].
Chheda, Juben N. ;
Huber, George W. ;
Dumesic, James A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7164-7183
[10]   Chemical routes for the transformation of biomass into chemicals [J].
Corma, Avelino ;
Iborra, Sara ;
Velty, Alexandra .
CHEMICAL REVIEWS, 2007, 107 (06) :2411-2502