Carbon nanomaterials for nerve tissue stimulation and regeneration

被引:85
作者
Fraczek-Szczypta, Aneta [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Mat Sci & Ceram, Dept Biomat, PL-30059 Krakow, Poland
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2014年 / 34卷
关键词
Carbon nanomaterials; Nerve regeneration and stimulation; Central and peripheral nerve system regeneration; ROOT GANGLIA NEURONS; ELECTRIC-FIELD; THERMAL-CONDUCTIVITY; NANOFIBER ARRAYS; YOUNGS MODULUS; IN-VITRO; NANOTUBES; SINGLE; SCAFFOLDS; BIOCOMPATIBILITY;
D O I
10.1016/j.msec.2013.09.038
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Nanotechnology offers new perspectives in the field of innovative medicine, especially for reparation and regeneration of irreversibly damaged or diseased nerve tissues due to lack of effective self-repair mechanisms in the peripheral and central nervous systems (PNS and CNS, respectively) of the human body. Carbon nanomaterials, due to their unique physical, chemical and biological properties, are currently considered as promising candidates for applications in regenerative medicine. This chapter discusses the potential applications of various carbon nanomaterials including carbon nanotubes, nanofibers and graphene for regeneration and stimulation of nerve tissue, as well as in drug delivery systems for nerve disease therapy. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 167 条
[121]  
Salvetat JP, 1999, ADV MATER, V11, P161, DOI 10.1002/(SICI)1521-4095(199902)11:2<161::AID-ADMA161>3.0.CO
[122]  
2-J
[123]   Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-I in vitro and subcutaneous tissue of rats in vivo [J].
Sato, Y ;
Yokoyama, A ;
Shibata, K ;
Akimoto, Y ;
Ogino, S ;
Nodasaka, Y ;
Kohgo, T ;
Tamura, K ;
Akasaka, T ;
Uo, M ;
Motomiya, K ;
Jeyadevan, B ;
Ishiguro, M ;
Hatakeyama, R ;
Watari, F ;
Tohji, K .
MOLECULAR BIOSYSTEMS, 2005, 1 (02) :176-182
[124]   Functionalized single graphene sheets derived from splitting graphite oxide [J].
Schniepp, HC ;
Li, JL ;
McAllister, MJ ;
Sai, H ;
Herrera-Alonso, M ;
Adamson, DH ;
Prud'homme, RK ;
Car, R ;
Saville, DA ;
Aksay, IA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (17) :8535-8539
[125]   Repairing the injured spinal cord [J].
Schwab, ME .
SCIENCE, 2002, 295 (5557) :1029-1031
[126]   Nanostructured scaffolds for neural applications [J].
Seidlits, Stephanie K. ;
Lee, Jae Y. ;
Schmidt, Christine E. .
NANOMEDICINE, 2008, 3 (02) :183-199
[127]   Electrically active nanomaterials as improved neural tissue regeneration scaffolds [J].
Seil, Justin T. ;
Webster, Thomas J. .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2010, 2 (06) :635-647
[128]   Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering [J].
Shi, Xinfeng ;
Sitharaman, Balaji ;
Pham, Quynh P. ;
Liang, Feng ;
Wu, Katherine ;
Billups, W. Edward ;
Wilson, Lon J. ;
Mikos, Antonios G. .
BIOMATERIALS, 2007, 28 (28) :4078-4090
[129]  
Shoval A., 2009, Frontiers in Neuroengineering, V2, P1
[130]   Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells [J].
Shvedova, AA ;
Castranova, V ;
Kisin, ER ;
Schwegler-Berry, D ;
Murray, AR ;
Gandelsman, VZ ;
Maynard, A ;
Baron, P .
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2003, 66 (20) :1909-1926