Symmetric Pseudo-Random Matrices

被引:8
作者
Soloveychik, Ilya [1 ]
Xiang, Yu [1 ]
Tarokh, Vahid [2 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
Pseudo-random matrices; semicircular law; Wigner ensemble; UNIVERSALITY;
D O I
10.1109/TIT.2018.2800004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of generating symmetric pseudo-random sign (+/- 1) matrices based on the similarity of their spectra to Wigner's semicircular law. Using binary m-sequences (Golomb sequences) of lengths n = 2(m) - 1, we give a simple explicit construction of circulant n x n sign matrices and show that their spectra converge to the semicircular law when n grows. The Kolmogorov complexity of the proposed matrices equals to that of Golomb sequences and is at most 2log(2)(n) bits.
引用
收藏
页码:3179 / 3196
页数:18
相关论文
共 51 条
[1]  
Alon N., 2016, The Probabilistic Method, Vfourth
[2]  
[Anonymous], PROBLEMY PEREDACHI I
[3]  
[Anonymous], 2011, The oxford handbook of random matrix theory
[5]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[6]  
Berlekamp E.R., 2015, ALGEBRAIC CODING THE
[7]   Limiting spectral distribution of a special circulant [J].
Bose, A ;
Mitra, J .
STATISTICS & PROBABILITY LETTERS, 2002, 60 (01) :111-120
[8]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[9]   QUASI-RANDOM GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL ;
WILSON, RM .
COMBINATORICA, 1989, 9 (04) :345-362
[10]  
Cover T. M., 2006, Elements of information theory, V2nd, DOI DOI 10.1002/047174882X