On a sum involving the Mangoldt function

被引:23
作者
Ma, Jing [1 ]
Wu, Jie [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Univ Paris Est Creteil, CNRS, Lab Anal & Mathemat Appl, LAMA 8050, F-94010 Creteil, France
基金
中国国家自然科学基金;
关键词
von Mangoldt function; Asymptotic formula;
D O I
10.1007/s10998-020-00359-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Lambda(n) be the von Mangoldt function, and let [t] be the integral part of real number t. In this note we prove that the asymptotic formula (n <= x)Sigma Lambda([x/n]) = x(d >= 1)Sigma Lambda(d)/d(d+1) + O-epsilon((x35/71+epsilon)) holds as x ->infinity for any epsilon > 0.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 6 条
[1]   On a sum involving the Euler function [J].
Bordelles, Olivier ;
Dai, Lixia ;
Heyman, Randell ;
Pan, Hao ;
Shparlinski, Igor E. .
JOURNAL OF NUMBER THEORY, 2019, 202 :278-297
[2]  
Kolesnik G, 1991, LONDON MATH SOC LECT, P126
[3]  
Vaughan R.C., 1980, Acta Arith., V37, P111
[4]   Note on a paper by Bordelles, Dai, Heyman, Pan and Shparlinski [J].
Wu, J. .
PERIODICA MATHEMATICA HUNGARICA, 2020, 80 (01) :95-102
[5]   On a sum involving the Euler totient function [J].
Wu, J. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (04) :536-541
[6]   On a sum involving the Euler function [J].
Zhai, Wenguang .
JOURNAL OF NUMBER THEORY, 2020, 211 :199-219