Global bifurcation on time scales

被引:25
作者
Davidson, FA [1 ]
Rynne, BP
机构
[1] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Sturm-Liouville; time scale; global bifurcation;
D O I
10.1006/jmaa.2001.7780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the structure of the solution set of a nonlinear Sturm-Liouville boundary value problem defined on a general time scale. Using global bifurcation theory we show that unbounded continua of nontrivial solutions bifurcate from the trivial solution at the eigenvalues of the linearization, and we show that certain nodal properties of the solutions are preserved along these continua. These results extend the well-known results of Rabinowitz for the case of Sturm-Liouville ordinary differential equations. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:345 / 360
页数:16
相关论文
共 50 条
[31]   LOCAL AND GLOBAL BIFURCATION FOR SOME NONLINEARIZABLE EIGENVALUE PROBLEMS [J].
Mamedova, Gunay M. .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2014, 40 (02) :45-51
[32]   A global bifurcation theorem for critical values in Banach spaces [J].
Amster, Pablo ;
Benevieri, Pierluigi ;
Haddad, Julian .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (03) :773-794
[33]   Unilateral Global Bifurcation for Eigenvalue Problems with Homogeneous Operator [J].
Dai, Guowei ;
Feng, Zhaosheng .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (06)
[34]   Global bifurcation for asymptotically linear Schrödinger equations [J].
François Genoud .
Nonlinear Differential Equations and Applications NoDEA, 2013, 20 :23-35
[35]   Global Bifurcation of Anti-plane Shear Fronts [J].
Chen, Robin Ming ;
Walsh, Samuel ;
Wheeler, Miles H. .
JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (02)
[36]   A global bifurcation theorem for critical values in Banach spaces [J].
Pablo Amster ;
Pierluigi Benevieri ;
Julián Haddad .
Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 :773-794
[37]   Mode decomposition of global bifurcation diagram with Grobner bases [J].
Hisakado, T ;
Okumura, K .
PHYSICS LETTERS A, 2002, 292 (4-5) :263-268
[38]   Global bifurcation of an elastic conducting rod in a magnetic field [J].
Wolfe, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (02) :528-542
[39]   Global Bifurcation of Anti-plane Shear Fronts [J].
Robin Ming Chen ;
Samuel Walsh ;
Miles H. Wheeler .
Journal of Nonlinear Science, 2021, 31
[40]   GLOBAL HOPF BIFURCATION IN NETWORKS WITH FAST FEEDBACK CYCLES [J].
Fiedler, Bernold .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (01) :177-203