Global bifurcation on time scales

被引:25
作者
Davidson, FA [1 ]
Rynne, BP
机构
[1] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Sturm-Liouville; time scale; global bifurcation;
D O I
10.1006/jmaa.2001.7780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the structure of the solution set of a nonlinear Sturm-Liouville boundary value problem defined on a general time scale. Using global bifurcation theory we show that unbounded continua of nontrivial solutions bifurcate from the trivial solution at the eigenvalues of the linearization, and we show that certain nodal properties of the solutions are preserved along these continua. These results extend the well-known results of Rabinowitz for the case of Sturm-Liouville ordinary differential equations. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:345 / 360
页数:16
相关论文
共 10 条
[1]   Sturm-Liouville eigenvalue problems on time scales [J].
Agarwal, RP ;
Bohner, M ;
Wong, PJY .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (2-3) :153-166
[2]  
[Anonymous], DIFFER EQU DYN SYST
[3]   Eigenvalue problems for nonlinear differential equations on a measure chain [J].
Chyan, CJ ;
Henderson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) :547-559
[4]   STRUCTURE OF SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
DANCER, EN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1069-1076
[5]  
EARL A., 1955, THEORY ORDINARY DIFF
[6]   Eigenvalue criteria for existence of positive solutions to nonlinear boundary value problems [J].
Erbe, L .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) :529-539
[7]  
Erbe L, 1999, DYN CONTIN DISCRET I, V6, P121
[8]  
Hilger S., 1990, Results Math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[9]  
LAKSHMIKANTHAM V, 1996, DYNAMICAL SYSTEM MEA
[10]  
Rabinowitz P.H., 1971, J. Funct. Anal, V7, P487, DOI 10.1016/0022-1236(71)90030-9