On the minimum distance of composite-length BCH codes

被引:10
作者
Yue, DW [1 ]
Zhu, HB [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Dept Telecommun Engn, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
BCH code; cyclic code; designed distance; minimum distance;
D O I
10.1109/4234.784583
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we derive a theorem which generalizes Theorem 3 in Chapter 9 of the book "The Theory of Error-Correcting Codes" by F. J. MacWilliams and N. J. A, Sloane, By this theorem, we are able to give several classes of BCH codes of composite length whose minimum distance does not exceed the BCH bound. Moreover, we show that this theorem can also be used to determine the true minimum distance of some other cyclic codes with composite-length.
引用
收藏
页码:269 / 271
页数:3
相关论文
共 4 条
[1]   IDEMPOTENTS AND THE BCH BOUND [J].
AUGOT, D ;
SENDRIER, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) :204-207
[2]   STUDYING THE LOCATOR POLYNOMIALS OF MINIMUM WEIGHT CODEWORDS OF BCH CODES [J].
AUGOT, D ;
CHARPIN, P ;
SENDRIER, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) :960-973
[3]  
Mac Williams F., 1977, THEORY ERROR CORRECT
[4]   Generation of matrices for determining minimum distance and decoding of cyclic codes [J].
Shen, KK ;
Wang, C ;
Tzeng, KK ;
Shen, BZ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :653-657