Theoretical and experimental analysis of the lithium-ion battery thermal runaway process based on the internal combustion engine combustion theory

被引:31
|
作者
Li, Weifeng [1 ]
Wang, Hewu [1 ]
Ouyang, Minggao [1 ]
Xu, Chengshan [1 ]
Lu, Languang [1 ]
Feng, Xuning [1 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lithium-ion batteries; Intemal combustion engine; Thermal runaway; Combustion; Mode; COMPRESSION IGNITION ENGINE; NOX EMISSIONS; HIGH-POWER; MIXTURE PROPERTIES; EXHAUST EMISSIONS; FUEL ENGINE; PERFORMANCE; EFFICIENCY; STABILITY; BEHAVIOR;
D O I
10.1016/j.enconman.2019.02.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a theoretical and experimental analysis of the thermal runaway process of lithium-ion batteries (LIBs) based on the internal combustion engines (ICEs) combustion theory. The experiments used 3.7 V, 31.6 Ah, lithium nickel cobalt manganese oxide cells and an electronically pilot-ignited natural gas engine. The temperature characteristics between the ICE combustion process and the LIB thermal runaway process were analyzed and compared. The process evolution of the LIB failure process was summaried with the ICE working .process. One key evaluation parameters (T-sa) and its physical meanings of LIB thermal runaway characteristics was proposed. The reaction mode of the LIB thermal runaway process and its process divisions were analyzed based on the ICE combustion theory. In addition, the method of optimizating the LIB thermal runaway process was pointed out from the viewpoint of reaction mode. The results show that there exist high similarities between the temperature characteristics of the ICE combustion process and the LIB thermal runaway process. The temperatures of the above two processes first rise slowly, then rise sharply, and finally fall rapidly. The LIB failure process can be divided into four processes similar to those of the ICE working process: assemble, abuse, thermal runaway, and eruption. T-sa is the key parameter for early warning and evaluation of thermal runaway. The whole process is dominated by reactivity-controlled self-accelerated chemical reaction (RSCR) mode. The LIB RSCR can be characterized in terms of the induction period and duration, similar to the ICE combustion process. The duration is divided into the slow-reaction, fast-reaction and post-reaction periods. The reaction process is always accompanied by derivative processes, such as gassing, erupting and burning. Based on the ICE combustion theory, it can be concluded that the main reason for the un-controlled LIB thermal runaway process is that the internal cell boundaries are not controlled effectively.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 50 条
  • [31] Microcalorimetry Analysis of Thermal Runaway Process in Lithium-ion Batteries
    Gu Xiaoyu
    Li Jin
    Sun Qian
    Wang Chaoyang
    ACTA CHIMICA SINICA, 2024, 82 (02) : 146 - 151
  • [32] Probing the thermal runaway triggering process within a lithium-ion battery cell with local heating
    Xu, X. M.
    Li, R. Z.
    Zhao, L.
    Hu, D. H.
    Wang, J.
    AIP ADVANCES, 2018, 8 (10)
  • [33] A study of the thermal runaway of lithium-ion batteries: A Gaussian Process based global sensitivity analysis
    Yeardley, Aaron S.
    Bugryniec, Peter J.
    Milton, Robert A.
    Brown, Solomon F.
    JOURNAL OF POWER SOURCES, 2020, 456
  • [34] Three-Dimensional Modeling for the Internal Shorting Caused Thermal Runaway Process in 20Ah Lithium-Ion Battery
    Liu, Xinyu
    Zhou, Zhifu
    Wu, Weitao
    Gao, Linsong
    Li, Yang
    Huang, Heng
    Huang, Zheng
    Li, Yubai
    Song, Yongchen
    ENERGIES, 2022, 15 (19)
  • [35] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [36] Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials
    Jia, Zhuangzhuang
    Qin, Peng
    Li, Zheng
    Wei, Zesen
    Jin, Kaiqiang
    Jiang, Lihua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [37] Thermal Runaway Characteristics of a Large Format Lithium-Ion Battery Module
    Cheng, Ximing
    Li, Tao
    Ruan, Xusong
    Wang, Zhenpo
    ENERGIES, 2019, 12 (16)
  • [38] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [39] Experimental study on the thermal runaway hazard quantification and its assessment parameters in the lithium-ion battery
    Hu, Xiangyu
    Zhu, Guoqing
    Liu, Tong
    Cui, Shaoqi
    Guo, Xianyang
    Chen, Xi
    JOURNAL OF ENERGY STORAGE, 2024, 101
  • [40] A Review of Lithium-Ion Battery Thermal Runaway Modeling and Diagnosis Approaches
    Tran, Manh-Kien
    Mevawalla, Anosh
    Aziz, Attar
    Panchal, Satyam
    Xie, Yi
    Fowler, Michael
    PROCESSES, 2022, 10 (06)