ITO-WIENER CHAOS AND THE HODGE DECOMPOSITION ON AN ABSTRACT WIENER SPACE

被引:0
|
作者
Yang, Yuxin [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
关键词
Wiener chaos; Hodge decomposition; L-2; cohomology; abstract Wiener space; Boson-Fermion Fock space; representation theory; symmetric group;
D O I
10.1142/S0219025713500082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the structure of the Boson-Fermion Fock space and an argument taken from [P. Bieliavsky, M. Cahen, S. Gutt, J. Rawnsley and L. Schwachhofer, Symplectic connections, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 375-420], we give a new proof of the triviality of the L-2 cohomology groups on an abstract Wiener space, alternative to that given by Shigekawa [De Rham-Hodge-Kodaira's decomposition on an abstract Wiener space, J. Math. Kyoto. Univ. 26(2) (1986) 191-202]. We apply the representation theory of the symmetric group to characterize the spaces of exact and co-exact forms in their Boson-Fermion Fock space representation.
引用
收藏
页数:14
相关论文
共 50 条