Multiple solutions for impulsive problems with non-autonomous perturbations

被引:54
|
作者
Liu, Jian [1 ]
Zhao, Zengqin [2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Math & Quantitat Econ, Jinan 250014, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
关键词
Non-autonomous perturbation; Variational method; Multiple solutions; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; VARIATIONAL APPROACH;
D O I
10.1016/j.aml.2016.08.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of multiple solutions for nonlinear impulsive problems with small non-autonomous perturbations. We show the existence of at least three distinct classical solutions by using variational methods and a three critical points theorem. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:143 / 149
页数:7
相关论文
共 50 条
  • [1] ON THE CONTINUATION OF SOLUTIONS OF NON-AUTONOMOUS SEMILINEAR PARABOLIC PROBLEMS
    Carvalho, Alexandre N.
    Cholewa, Jan W.
    Nascimento, Marcelo J. D.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 17 - 55
  • [2] NON-AUTONOMOUS BIFURCATION IN IMPULSIVE SYSTEMS
    Akhmet, M. U.
    Kashkynbayev, A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2013, (74) : 1 - 23
  • [3] Asymptotic behavior of a stochastic non-autonomous predator-prey model with impulsive perturbations
    Wu, Ruihua
    Zou, Xiaoling
    Wang, Ke
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) : 965 - 974
  • [4] Modeling and analysis of a non-autonomous single-species model with impulsive and random perturbations
    Liu, Zhijun
    Guo, Shengliang
    Tan, Ronghua
    Liu, Meng
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (9-10) : 5510 - 5531
  • [5] Perturbations of non-autonomous second-order abstract Cauchy problems
    Budde, C.
    Seifert, C.
    ANALYSIS MATHEMATICA, 2024, 50 (03) : 733 - 755
  • [6] Autonomous and non-autonomous unbounded attractors under perturbations
    Carvalho, Alexandre N.
    Pimentel, Juliana F. S.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 877 - 903
  • [7] Periodic Solutions for Conformable Non-autonomous Non-instantaneous Impulsive Differential Equations
    Ding, Yuanlin
    Liu, Kui
    MATHEMATICA SLOVACA, 2024, 74 (06) : 1489 - 1506
  • [8] Periodic Solution of a Stochastic Non-Autonomous Lotka-Volterra Cooperative System with Impulsive Perturbations
    Lv, Chuan
    Jiang, Daqing
    Wu, Ruihua
    FILOMAT, 2018, 32 (04) : 1151 - 1158
  • [9] Existence and Uniqueness of Solutions for a Class of Non-Autonomous Dirichlet Problems
    Korman, Philip
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2005, 48 (01): : 99 - 111
  • [10] Impulsive non-autonomous dynamical systems and impulsive cocycle attractors
    Bonotto, Everaldo M.
    Bortolan, Matheus C.
    Caraballo, Tomas
    Collegari, Rodolfo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (04) : 1095 - 1113