External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients

被引:38
作者
Eertink, Jakoba J. [1 ,2 ]
Heymans, Martijn W. [3 ,4 ]
Zwezerijnen, Gerben J. C. [2 ,5 ]
Zijlstra, Josee M. [1 ,2 ]
de Vet, Henrica C. W. [3 ,4 ]
Boellaard, Ronald [2 ,5 ]
机构
[1] Amsterdam UMC Locat Vrije Univ Amsterdam, Dept Hematol, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
[2] Canc Ctr Amsterdam, Imaging & Biomarkers, Amsterdam, Netherlands
[3] Amsterdam UMC Locat Vrije Univ Amsterdam, Epidemiol & Data Sci, Amsterdam, Netherlands
[4] Amsterdam Publ Hlth Res Inst, Methodol, Amsterdam, Netherlands
[5] Amsterdam UMC Locat Vrije Univ Amsterdam, Radiol & Nucl Med, Amsterdam, Netherlands
关键词
Internal validation; External validation; Model performance; CV-AUC;
D O I
10.1186/s13550-022-00931-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Aim Clinical prediction models need to be validated. In this study, we used simulation data to compare various internal and external validation approaches to validate models. Methods Data of 500 patients were simulated using distributions of metabolic tumor volume, standardized uptake value, the maximal distance between the largest lesion and another lesion, WHO performance status and age of 296 diffuse large B cell lymphoma patients. These data were used to predict progression after 2 years based on an existing logistic regression model. Using the simulated data, we applied cross-validation, bootstrapping and holdout (n = 100). We simulated new external datasets (n = 100, n = 200, n = 500) and simulated stage-specific external datasets (1), varied the cut-off for high-risk patients (2) and the false positive and false negative rates (3) and simulated a dataset with EARL2 characteristics (4). All internal and external simulations were repeated 100 times. Model performance was expressed as the cross-validated area under the curve (CV-AUC +/- SD) and calibration slope. Results The cross-validation (0.71 +/- 0.06) and holdout (0.70 +/- 0.07) resulted in comparable model performances, but the model had a higher uncertainty using a holdout set. Bootstrapping resulted in a CV-AUC of 0.67 +/- 0.02. The calibration slope was comparable for these internal validation approaches. Increasing the size of the test set resulted in more precise CV-AUC estimates and smaller SD for the calibration slope. For test datasets with different stages, the CV-AUC increased as Ann Arbor stages increased. As expected, changing the cut-off for high risk and false positive- and negative rates influenced the model performance, which is clearly shown by the low calibration slope. The EARL2 dataset resulted in similar model performance and precision, but calibration slope indicated overfitting. Conclusion In case of small datasets, it is not advisable to use a holdout or a very small external dataset with similar characteristics. A single small testing dataset suffers from a large uncertainty. Therefore, repeated CV using the full training dataset is preferred instead. Our simulations also demonstrated that it is important to consider the impact of differences in patient population between training and test data, which may ask for adjustment or stratification of relevant variables.
引用
收藏
页数:8
相关论文
共 14 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Generation and validation of a PET radiomics model that predicts survival in diffuse large B cell lymphoma treated with R-CHOP14: A SAKK 38/07 trial post-hoc analysis [J].
Ceriani, Luca ;
Milan, Lisa ;
Cascione, Luciano ;
Gritti, Giuseppe ;
Dalmasso, Federico ;
Esposito, Fabiana ;
Pirosa, Maria Cristina ;
Schaer, Saemi ;
Bruno, Andrea ;
Dirnhofer, Stephan ;
Giovanella, Luca ;
Hayoz, Stefanie ;
Mamot, Christoph ;
Rambaldi, Alessandro ;
Chauvie, Stephane ;
Zucca, Emanuele .
HEMATOLOGICAL ONCOLOGY, 2022, 40 (01) :11-21
[3]   18F-FDG PET baseline radiomics features improve the prediction of treatment outcome in diffuse large B-cell lymphoma [J].
Eertink, Jakoba J. ;
van de Brug, Tim ;
Wiegers, Sanne E. ;
Zwezerijnen, Gerben J. C. ;
Pfaehler, Elisabeth A. G. ;
Lugtenburg, Pieternella J. ;
van der Holt, Bronno ;
de Vet, Henrica C. W. ;
Hoekstra, Otto S. ;
Boellaard, Ronald ;
Zijlstra, Josee M. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (03) :932-942
[4]  
Ferreira M, 2021, EUR J NUCL MED MOL I, V48, P3432, DOI 10.1007/s00259-021-05303-5
[5]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[6]  
2-4
[7]   Re-evaluation of the comparative effectiveness of bootstrap-based optimism correction methods in the development of multivariable clinical prediction models [J].
Iba, Katsuhiro ;
Shinozaki, Tomohiro ;
Maruo, Kazushi ;
Noma, Hisashi .
BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
[8]   Quantitative implications of the updated EARL 2019 PET-CT performance standards [J].
Kaalep, Andres ;
Burggraaff, Coreline N. ;
Pieplenbosch, Simone ;
Verwer, Eline E. ;
Sera, Terez ;
Zijlstra, Josee ;
Hoekstra, Otto S. ;
Oprea-Lager, Daniela E. ;
Boellaard, Ronald .
EJNMMI PHYSICS, 2019, 6 (01)
[9]   Rituximab-CHOP With Early Rituximab Intensification for Diffuse Large B-Cell Lymphoma: A Randomized Phase III Trial of the HOVON and the Nordic Lymphoma Group (HOVON-84) [J].
Lugtenburg, Pieternella Johanna ;
Brown, Peter de Nully ;
van der Holt, Bronno ;
D'Amore, Francesco A. ;
Koene, Harry R. ;
de Jongh, Eva ;
Fijnheer, Rob ;
van Esser, Joost W. ;
Boehmer, Lara H. ;
Pruijt, Johannes F. ;
Verhoef, Gregor E. ;
Hoogendoorn, Mels ;
Bilgin, Memis Y. ;
Nijland, Marcel ;
van der Burg-de Graauw, Nicole C. ;
Oosterveld, Margreet ;
Jie, Kon-Siong G. ;
Larsen, Thomas Stauffer ;
van der Poel, Marjolein W. ;
Leijs, Maria B. ;
Silbermann, Matthijs H. ;
Kooy, Marinus van Marwijk ;
Beeker, Aart ;
Kersten, Marie J. ;
Doorduijn, Jeanette K. ;
Tick, Lidwine W. ;
Brouwer, Rolf E. ;
Lam, King H. ;
Burggraaff, Coreline N. ;
de Keizer, Bart ;
Arens, Anne I. ;
de Jong, Daphne ;
Hoekstra, Otto S. ;
Zijlstra-Baalbergen, Josee M. .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (29) :3377-3387
[10]   Predictive value of quantitative 18F-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma [J].
Martens, Roland M. ;
Koopman, Thomas ;
Noij, Daniel P. ;
Pfaehler, Elisabeth ;
Ubelhor, Caroline ;
Sharma, Sughandi ;
Vergeer, Marije R. ;
Leemans, C. Rene ;
Hoekstra, Otto S. ;
Yaqub, Maqsood ;
Zwezerijnen, Gerben J. ;
Heymans, Martijn W. ;
Peeters, Carel F. W. ;
de Bree, Remco ;
de Graaf, Pim ;
Castelijns, Jonas A. ;
Boellaard, Ronald .
EJNMMI RESEARCH, 2020, 10 (01)