Comparison Results on Preconditioned GAOR Methods for Weighted Linear Least Squares Problems

被引:7
作者
Wang, Guangbin [1 ]
Du, Yanli [1 ]
Tan, Fuping [2 ]
机构
[1] Qingdao Univ Sci & Technol, Dept Math, Qingdao 266061, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
AOR METHOD; CONVERGENCE; SYSTEMS;
D O I
10.1155/2012/563586
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present preconditioned generalized accelerated overrelaxation methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give a numerical example to confirm our theoretical results.
引用
收藏
页数:9
相关论文
共 7 条
[1]  
[Anonymous], 1994, CLASSICS APPL MATH
[2]   On convergence of the generalized accelerated overrelaxation method [J].
Darvishi, M. T. ;
Hessari, P. ;
Yuan, J. Y. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) :468-477
[3]   Preconditioned modified AOR method for systems of linear equations [J].
Darvishi, M. T. ;
Hessari, P. ;
Shin, Byeong-Chun .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (05) :758-769
[4]   On convergence of the generalized AOR method for linear systems with diagonally dominant coefficient matrices [J].
Darvishi, MT ;
Hessari, P .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) :128-133
[5]  
VARGA RS, 2000, SPR S COMP, V27, P1, DOI 10.1007/978-3-642-05156-2
[6]   Convergence of the generalized AOR method [J].
Yuan, JY ;
Jin, XQ .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 99 (01) :35-46
[7]   Numerical methods for generalized least squares problems [J].
Yuan, JY .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 66 (1-2) :571-584