[1] Kyushu Inst Technol, 1-1 Sensui, Kitakyushu, Fukuoka 8048550, Japan
[2] Oshima Coll, Natl Inst Technol, Suo Oshima, Japan
[3] Yamaguchi Univ, Yamaguchi, Japan
来源:
2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS)
|
2017年
关键词:
Ground Glass Opacity;
Computer Aided Diagnosis;
Lung Image Database Consortium;
Deep Convolutional Neural Network;
Adaptive Ring Filter;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Lung cancer is the leading cause of death which accounts for the number of deaths in cancer in the world. Early detection and early treatment are regarded as an important. Especially, the ground glass opacity (GGO) is a shadow called pre-cancerous lesion, but it is a shadow which is difficult to detect by a radiologist because of haze and complicated shape. Therefore, in recent years, a computer aided diagnosis (CAD) system has been developed for the purpose of improving the detection accuracy for early detection and reducing the burden to radiologists. In this paper, we extract the GGO using Deep Convolutional Neural Network (DCNN) based on emphasized images. Before detect a GGO region, we apply preprocessing such as isotropic voxel to the original images, and extraction of the lung area. Next, we remove the vessel and bronchial region by 3D line filter based on Hessian matrix, and extract the initial candidate regions using density gradient, volume and sphericity. Subsequently, we segment the candidate regions, extraction of features, and reducing false positive shadows. Finally we create emphasize images and identify with DCNN using those images. As a result of applying the proposed method to 31 cases on Lung Image Database Consortium (LIDC), we obtained a true positive rate (TP) of 86.05 [%] and false positive number (FP) of 4.81[/case].
机构:
Prince Mohammad Bin Fahd Univ, Ctr Artificial Intelligence, Khobar, Saudi ArabiaAmrita Vishwa Vidyapeetham, Amrita Sch Engn, Ctr Computat Engn & Networking CEN, Coimbatore, India
机构:
Univ Porto, Fac Engn, FEUP Campus, P-4200465 Porto, Portugal
INESC TEC INESC Technol & Sci, FEUP Campus, P-4200465 Porto, PortugalUniv Porto, Fac Engn, FEUP Campus, P-4200465 Porto, Portugal
Rocha, Joana
Cunha, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
INESC TEC INESC Technol & Sci, FEUP Campus, P-4200465 Porto, Portugal
Univ Tras Os Montes & Alto Douro, P-5001801 Vila Real, PortugalUniv Porto, Fac Engn, FEUP Campus, P-4200465 Porto, Portugal
Cunha, Antonio
Mendonca, Ana Maria
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Engn, FEUP Campus, P-4200465 Porto, Portugal
INESC TEC INESC Technol & Sci, FEUP Campus, P-4200465 Porto, PortugalUniv Porto, Fac Engn, FEUP Campus, P-4200465 Porto, Portugal
Mendonca, Ana Maria
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I,
2019,
11804
: 361
-
371
机构:
Univ Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USAUniv Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USA
Anisuzzaman, D. M.
Barzekar, Hosein
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USAUniv Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USA
Barzekar, Hosein
Tong, Ling
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Hlth Informat & Adm, Milwaukee, WI 53211 USAUniv Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USA
Tong, Ling
Luo, Jake
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Hlth Informat & Adm, Milwaukee, WI 53211 USAUniv Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USA
Luo, Jake
Yu, Zeyun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USA
Univ Wisconsin, Dept Biomed Engn, Milwaukee, WI 53211 USAUniv Wisconsin, Dept Comp Sci, Big Data Analyt & Visualizat Lab, Milwaukee, WI 53211 USA