Extraction of GGO Regions from Chest CT Images Using Deep Learning

被引:0
|
作者
Hirayama, Kazuki [1 ]
Miyake, Noriaki [1 ]
Lu, Huimin [1 ]
Tan, Joo Kooi [1 ]
Kim, Hyoungseop [1 ]
Tachibana, Rie [2 ]
Hirano, Yasushi [3 ]
Kido, Shoji [3 ]
机构
[1] Kyushu Inst Technol, 1-1 Sensui, Kitakyushu, Fukuoka 8048550, Japan
[2] Oshima Coll, Natl Inst Technol, Suo Oshima, Japan
[3] Yamaguchi Univ, Yamaguchi, Japan
来源
2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS) | 2017年
关键词
Ground Glass Opacity; Computer Aided Diagnosis; Lung Image Database Consortium; Deep Convolutional Neural Network; Adaptive Ring Filter;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer is the leading cause of death which accounts for the number of deaths in cancer in the world. Early detection and early treatment are regarded as an important. Especially, the ground glass opacity (GGO) is a shadow called pre-cancerous lesion, but it is a shadow which is difficult to detect by a radiologist because of haze and complicated shape. Therefore, in recent years, a computer aided diagnosis (CAD) system has been developed for the purpose of improving the detection accuracy for early detection and reducing the burden to radiologists. In this paper, we extract the GGO using Deep Convolutional Neural Network (DCNN) based on emphasized images. Before detect a GGO region, we apply preprocessing such as isotropic voxel to the original images, and extraction of the lung area. Next, we remove the vessel and bronchial region by 3D line filter based on Hessian matrix, and extract the initial candidate regions using density gradient, volume and sphericity. Subsequently, we segment the candidate regions, extraction of features, and reducing false positive shadows. Finally we create emphasize images and identify with DCNN using those images. As a result of applying the proposed method to 31 cases on Lung Image Database Consortium (LIDC), we obtained a true positive rate (TP) of 86.05 [%] and false positive number (FP) of 4.81[/case].
引用
收藏
页码:351 / 355
页数:5
相关论文
共 50 条
  • [21] Role of standard and soft tissue chest radiography images in COVID-19 diagnosis using deep learning
    Hu, Qiyuan
    Drukker, Karen
    Giger, Maryellen L.
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [22] An efficient deep learning-based framework for tuberculosis detection using chest X-ray images
    Iqbal, Ahmed
    Usman, Muhammad
    Ahmed, Zohair
    TUBERCULOSIS, 2022, 136
  • [23] Chest Diseases Classification Using CXR and Deep Ensemble Learning
    Nasser, Adnane Ait
    Akhloufi, Moulay A.
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 116 - 120
  • [24] Extraction of stomach fold regions from abdominal X-ray CT images using 3D top-hat transformation
    Watanabe, S
    Hasegawa, J
    Mekada, Y
    Mori, K
    Nawano, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 2004, 87 (02): : 37 - 46
  • [25] Study on the Detection of Pulmonary Nodules in CT Images Based on Deep Learning
    Li, Gai
    Zhou, Wei
    Chen, Weibin
    Sun, Fengtao
    Fu, Yu
    Gong, Fengling
    Zhang, Huiying
    IEEE ACCESS, 2020, 8 : 67300 - 67309
  • [26] Fine_Denseiganet: Automatic Medical Image Classification in Chest CT Scan Using Hybrid Deep Learning Framework
    Sahu, Hemlata P.
    Kashyap, Ramgopal
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2025, 25 (01)
  • [27] Comparison and verification of two deep learning models for the detection of chest CT rib fractures
    Sun Hongbiao
    Xu Shaochun
    Wang Xiang
    Tang YuRun
    Lu Yang
    Zhang Mingzi
    Yang Hua
    Zhao Keyang
    Fu Chi-Cheng
    Fang Qu
    Gu Pengchen
    Xiao Yi
    Liu Shiyuan
    ACTA RADIOLOGICA, 2023, 64 (02) : 542 - 551
  • [28] Lung Nodule Classification Using Deep ConvNets On CT Images
    Sathyan, Haritha
    Panicker, Vinitha J.
    2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [29] Simultaneous Extraction of Road and Centerline from Aerial Images Using a Deep Convolutional Neural Network
    Alshaikhli, Tamara
    Liu, Wen
    Maruyama, Yoshihisa
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (03)
  • [30] Progressive and Combined Deep Transfer Learning for pneumonia diagnosis in chest X-ray images
    Khaled, Mamar
    Gaceb, Djamel
    Touazi, Faycal
    Otsmane, Ahmed
    Boutoutaou, Farouk
    5TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE, IDDM 2022, 2022, 3302