Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays

被引:0
作者
Ong, Wee-Liat [1 ]
Rupich, Sara M. [2 ]
Talapin, Dmitri V. [2 ]
McGaughey, Alan J. H. [1 ,3 ]
Malen, Jonathan A. [1 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
COLLOIDAL NANOCRYSTALS; MONOLAYERS; HEAT; CONDUCTIVITY; CONDUCTANCE; CDSE; PBSE;
D O I
10.1038/NMAT3596
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Arrays of ligand-stabilized colloidal nanocrystals with size-tunable electronic structure are promising alternatives to single-crystal semiconductors in electronic, optoelectronic and energy-related applications(1-5). Hard/soft interfaces in these nanocrystal arrays (NCAs) create a complex and uncharted vibrational landscape for thermal energy transport that will influence their technological feasibility. Here, we present thermal conductivity measurements of NCAs (CdSe, PbS, PbSe, PbTe, Fe3O4 and Au) and reveal that energy transport is mediated by the density and chemistry of the organic/inorganic interfaces, and the volume fractions of nanocrystal cores and surface ligands. NCA thermal conductivities are controllable within the range 0.1-0.3 W m(-1) K-1, and only weakly depend on the thermal conductivity of the inorganic core material. This range is 1,000 times lower than the thermal conductivity of silicon, presenting challenges for heat dissipation in NCA-based electronics and photonics. It is, however, 10 times smaller than that of Bi2Te3, which is advantageous for NCA-based thermoelectric materials.
引用
收藏
页码:410 / 415
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2003, DIFFERENTIAL SCANNIN, DOI DOI 10.1007/978-3-662-06710-9
[2]  
Baroncini C., 1981, International Journal of Thermophysics, V2, P21, DOI 10.1007/BF00503572
[3]   OPTOELECTRONICS Combining chemical worlds [J].
Briseno, Alejandro L. ;
Yang, Peidong .
NATURE MATERIALS, 2009, 8 (01) :7-8
[4]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[5]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[6]   ELASTIC CONSTANTS OF HEXAGONAL BEO ZNS AND CDSE [J].
CLINE, CF ;
DUNEGAN, HL ;
HENDERSON, GW .
JOURNAL OF APPLIED PHYSICS, 1967, 38 (04) :1944-+
[7]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[8]   Air-stable all-inorganic nanocrystal solar cells processed from solution [J].
Gur, I ;
Fromer, NA ;
Geier, ML ;
Alivisatos, AP .
SCIENCE, 2005, 310 (5747) :462-465
[9]   Preparation and thermal characteristics of CuO-oleic acid nanofluids as a phase change material [J].
Harikrishnan, S. ;
Kalaiselvam, S. .
THERMOCHIMICA ACTA, 2012, 533 :46-55