The Ability for Posterior Predictive Checking to Identify Model Misspecification in Bayesian Growth Mixture Modeling

被引:0
作者
Depaoli, Sarah [1 ]
机构
[1] Univ California, Merced, CA USA
关键词
growth mixture modeling; model misspecification; posterior predictive checking; SPECIFICATION ERROR; LATENT CLASS; BAUER; SELECTION; IMPACT;
D O I
10.1080/10705511.2012.713251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Proper model specification is an issue for researchers, regardless of the estimation framework being utilized. Typically, indexes are used to compare the fit of one model to the fit of an alternate model. These indexes only provide an indication of relative fit and do not necessarily point toward proper model specification. There is a procedure in the Bayesian framework called posterior predictive checking that is designed theoretically to detect model misspecification for observed data. However, the performance of the posterior predictive check procedure has thus far not been directly examined under different conditions of mixture model misspecification. This article addresses this task and aims to provide additional insight into whether or not posterior predictive checks can detect model misspecification within the context of Bayesian growth mixture modeling. Results indicate that this procedure can only identify mixture model misspecification under very extreme cases of misspecification.
引用
收藏
页码:534 / 560
页数:27
相关论文
共 56 条
[1]  
Akaike H., 1998, Selected papers of Hirotugu Akaike, P199, DOI DOI 10.1007/978-1-4612-1694-0_15
[2]  
[Anonymous], 2006, APPROACHES LABEL SWI
[3]  
[Anonymous], 2001, Bayesian Statistical Modelling
[4]  
Asparouhov T., 2010, BAYESIAN ANAL USING
[5]  
Asparouhov T., 2010, WEIGHTED LEAST SQUAR, P1, DOI DOI 10.1016/0165-1765(94)90069-8
[6]  
Bartlett M. S., 1957, Biometrika, V44, P533, DOI [10.1093/biomet/44.3-4.533, DOI 10.1093/BIOMET/44.3-4.533]
[7]   Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes [J].
Bauer, DJ ;
Curran, PJ .
PSYCHOLOGICAL METHODS, 2003, 8 (03) :338-363
[8]  
Berkhof J, 2003, STAT SINICA, V13, P423
[9]  
Boomsma A., 1987, STRUCTURAL EQUATION, P160, DOI DOI 10.1017/CBO9780511601118.010
[10]  
Congdon P, 2005, WILEY SER PROBAB ST, P1, DOI 10.1002/0470092394